在平面直角坐標(biāo)系xOy中,曲線y=x2-2x-3與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若直線x+y+a=0與圓C交于A,B兩點(diǎn),且AB=2,求實(shí)數(shù)a的值.
(1)x2+y2-2x+2y-3=0(2)
解析試題分析:(1)曲線y=x2-2x-3與坐標(biāo)軸的交點(diǎn)有三個(gè)交點(diǎn),本題就是求過(guò)三個(gè)點(diǎn)的圓的方程,因此設(shè)圓方程的一般式x2+y2+Dx+Ey+F=0,若從圖形看,則圓的方程又可設(shè)成x2+y2-2x+Ey-3=0,再利用過(guò)點(diǎn)求出(2)先將圓的一般式化為標(biāo)準(zhǔn)式:,明確圓心和半徑,涉及圓的弦長(zhǎng)問(wèn)題,利用由半徑、半弦長(zhǎng)、圓心到弦所在直線距離構(gòu)成的直角三角形,列等量關(guān)系:
試題解析:(1)曲線與y軸的交點(diǎn)是(0,-3).令y=0,得x2-2x-3=0,解得x=-1或x=3.
即曲線與x軸的交點(diǎn)是(-1,0),(3,0). 2分
設(shè)所求圓C的方程是x2+y2+Dx+Ey+F=0,
則,解得D=-2,E=2,F(xiàn)=-3.
所以圓C的方程是x2+y2-2x+2y-3=0. 5分
(2)圓C的方程可化為,
所以圓心C(1,-1),半徑. 7分
圓心C到直線x+y+a=0的距離,由于
所以,解得. 10分
考點(diǎn):圓的一般式方程,圓的弦長(zhǎng)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知D為△ABC的BC邊上一點(diǎn),⊙O1經(jīng)過(guò)點(diǎn)B、D交AB于另一點(diǎn)E,⊙O2經(jīng)過(guò)點(diǎn)C、D交AC于另一點(diǎn)F,⊙O1與⊙O2交于點(diǎn)G.
(1)求證:∠EAG=∠EFG;
(2)若⊙O2的半徑為5,圓心O2到直線AC的距離為3,AC=10,AG切⊙O2于G,求線段AG的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知以點(diǎn)為圓心的圓經(jīng)過(guò)點(diǎn)和,且圓心在直線上.
(1)求圓的方程;
(2)設(shè)點(diǎn)在圓上,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓的方程:,其中.
(1)若圓C與直線相交于,兩點(diǎn),且,求的值;
(2)在(1)條件下,是否存在直線,使得圓上有四點(diǎn)到直線的距離為,若存在,求出的范圍,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓.
(1)若圓的切線在軸和軸上的截距相等,且截距不為零,求此切線的方程;
(2)從圓外一點(diǎn)向該圓引一條切線,切點(diǎn)為,為坐標(biāo)原點(diǎn),且有,求使的長(zhǎng)取得最小值的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知兩點(diǎn)、,點(diǎn)為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若點(diǎn)是動(dòng)點(diǎn)的軌跡上的一點(diǎn),是軸上的一動(dòng)點(diǎn),試討論直線
與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)A(-3,0),B(3,0),動(dòng)點(diǎn)P滿足|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線C,求此曲線的方程;
(2)若點(diǎn)Q在直線l1:x+y+3=0上,直線l2經(jīng)過(guò)點(diǎn)Q且與曲線C只有一個(gè)公共點(diǎn)M,求|QM|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓的圓心在直線上,且與直線相切于點(diǎn).
(Ⅰ)求圓方程;
(Ⅱ)點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱.是否存在過(guò)點(diǎn)的直線,與圓相交于兩點(diǎn),且使三角形(為坐標(biāo)原點(diǎn)),若存在求出直線的方程,若不存在用計(jì)算過(guò)程說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com