設(shè)x>0,則y=2x+
2
x
的最小值等于
 
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:利用基本不等式的性質(zhì)即可得出.
解答: 解:∵x>0,
∴y≥2
2x•
2
x
=4,當且僅當x=2時取等號.
∴y=2x+
2
x
的最小值等于4.
故答案為:4.
點評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知在正方體ABCD-A′B′C′D′中,P是B′D′的中點,對角線A′C∩平面AB′D′=Q,求證:A,Q,P三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)(x∈R,x≠
1
a
)滿足ax•f(x)=2bx+f(x),a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若數(shù)列{an}滿足a1=
2
3
,an+1=f(an),bn=-5-4
an
1-an
,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式.
(Ⅲ)在(Ⅱ)的條件下,若cn=
1
bn+(-1)n
,Sn=c1+c2+c3+…+cn,求證:Sn
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)對任意x∈R都有f(x)+f(1-x)=2.
(1)求f(
1
2
)和f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(2)數(shù)列f(x)滿足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),(n∈N*),求證:數(shù)列f(x)是等差數(shù)列;
(3)若bn=
1
an-1
,Tn=b12+b22+b32+…+bn2,Sn=
10n
6n+3
,試比較Tn與Sn的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx+x2(a為實常數(shù)).
(1)若a=-2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(2)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實數(shù)a的取值范圍;
(3)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓臺的軸與母線所在直線的夾角為45°,若上底面的半徑為1,下底面半徑為4,圓臺的高為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
AB
=(k,1),
AC
=(2,4),若k為滿足|
AB
|≤4的隨機整數(shù),則
AB
BC
的概率為( 。
A、
1
7
B、
2
7
C、
1
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2(x-1)2和g(x)=
1
2
(x-1)2,h(x)=(x-1)2的圖象都是開口向上的拋物線,在同一坐標系中,哪個拋物線開口最開闊( 。
A、g(x)B、f(x)
C、h(x)D、不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)O是坐標原點,F(xiàn)是拋物線y2=4x的焦點,A是拋物線上的一點,
FA
與x軸正向的夾角為60°,則|
OA
|=
 

查看答案和解析>>

同步練習冊答案