設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=4x的焦點(diǎn),A是拋物線上的一點(diǎn),
FA
與x軸正向的夾角為60°,則|
OA
|=
 
考點(diǎn):拋物線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先過A作AD⊥x軸于D,構(gòu)造直角三角形,再根據(jù)
FA
與x軸正向的夾角為60°,求出FA的長度,可得到A的坐標(biāo),最后根據(jù)兩點(diǎn)間的距離公式可得答案.
解答: 解:過A作AD⊥x軸于D,令FD=m,則FA=2m,即F到準(zhǔn)線的距離為2m,
由拋物線的定義可得2+m=2m,即m=2.
∴A(3,2
3

∴|
OA
|=
9+12
=
21

故答案為:
21
點(diǎn)評(píng):本題主要考查拋物線的定義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,則y=2x+
2
x
的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
m
x+1
+nlnx(m,n為常數(shù))在x=1處的切線為x+y-2=0.
(1)求y=f(x)的單調(diào)區(qū)間;
(2)若任意實(shí)數(shù)x∈[
1
e
,1],使得對(duì)任意的t∈[
1
2
,2]上恒有f(x)≥t3-t2-2at+2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

全不為零的數(shù)列{an}的前n項(xiàng)和為Sn,且a2=2,Sn=
n(1+an)
2
,求證:對(duì)任意的不小于2的正整數(shù)n,不等式lnan+1
an-1
an3
+lnan都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-ax2-4(a+1)x+3在[2,+∞)上遞減,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x-1)3+2013×(x-1)=-1,(y-1)3+2013×(y-1)=1,求x+y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)θ為
 
時(shí),點(diǎn)P(-
1
2
,
3
2
)到直線xcosθ+ysinθ+2=0的距離最大,最大距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(-x)=f(
3
2
+x),且當(dāng)0<x≤
3
2
時(shí),f(x)=log2(3x+1),則f(2015)等于( 。
A、-1B、-2C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x、y滿足約束條件
x-y≥-1
x+y≥1
3x-y≤3
,則目標(biāo)函數(shù)z=2x+3y的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案