16.斜率為k(k>0)的直線l經(jīng)過點F(1,0)交拋物線y2=4x于A,B兩點,若△AOF的面積是△BOF面積的2倍,則k=2$\sqrt{2}$.

分析 利用S△AOF=2S△BOF,求得yA=-2yB,設(shè)出直線AB的方程,與拋物線方程聯(lián)立消去x,利用韋達定理求得m,即可求出k的值.

解答 解:∵S△AOF=2S△BOF,
∴yA=-2yB,①
∴設(shè)AB的方程為x=my+1(m>0),與y2=4x聯(lián)立消去x得y2-4my-4=0,
∴yA+yB=4m②,yAyB=-4③
由①②③可得m=$\frac{1}{2\sqrt{2}}$,∴k=2$\sqrt{2}$,
故答案為2$\sqrt{2}$.

點評 本題主要考查了拋物線的概念和性質(zhì),直線和拋物線的綜合問題.要注意解題中出了常規(guī)的聯(lián)立方程,用一元二次方程根與系數(shù)的關(guān)系表示外,還可考慮運用某些幾何性質(zhì).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\overrightarrow{AB}$=(1,2),$\overrightarrow{BC}$=(0,m),$\overrightarrow{a}$=(-1,-3),$\overrightarrow{AC}$∥$\overrightarrow{a}$,則實數(shù)m的值是( 。
A.-1B.$\frac{7}{3}$C.-$\frac{7}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,tanA是以2為第二項,12為第七項的等差數(shù)列{an}的公差,tanB是以3為第三項,81為第六項的等比數(shù)列{bn}的公比,則tanC=( 。
A.$\frac{5}{7}$B.1C.-$\frac{5}{7}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=2,AD=$\sqrt{3}$,∠DAB=$\frac{π}{6}$,PD⊥AD,PD⊥DC.
(Ⅰ)證明:BC⊥平面PBD;
(Ⅱ)若二面角P-BC-D為$\frac{π}{3}$,求AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.關(guān)于復(fù)數(shù)z=$\frac{2}{-1+i}$,下列說法中正確的是(  )
A.|z|=2
B.z的虛部為-i
C.z的共軛復(fù)數(shù)$\overline{z}$位于復(fù)平面的第三象限
D.z•$\overline{z}$=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=2sinx-t(-$\frac{5π}{2}$≤x≤0)的三個零點x1,x2,x3(x1<x2<x3)成等比數(shù)列,則log2(-$\sqrt{2}$•t)=( 。
A.0B.$\frac{1}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)P是正方體ABCD-A1B1C1D1的對角面BDD1B1(含邊界)內(nèi)的點,若點P到平面ABC、平面ABA1、平面ADA1的距離相等,則符合條件的點P( 。
A.僅有一個B.有有限多個C.有無限多個D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=x+asinx-$\frac{1}{3}$sin2x在R上單調(diào)遞增,則a的取值范圍是( 。
A.[-1,1]B.[-1,$\frac{1}{3}$]C.[-$\frac{1}{3}$,$\frac{1}{3}$]D.[-1,-$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若${x^{10}}-{x^5}={a_0}+{a_1}({x-1})+{a_2}{({x-1})^2}+…+{a_{10}}{({x-1})^{10}}$,則a5=251.

查看答案和解析>>

同步練習冊答案