A. | f(x)在(-$\frac{5π}{12}$,$\frac{π}{12}$)上是減函數(shù) | B. | f(x)在(-$\frac{5π}{12}$,$\frac{π}{12}$)上是增函數(shù) | ||
C. | f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是減函數(shù) | D. | f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是增函數(shù) |
分析 根據(jù)題意,得出函數(shù)f(x)的最小正周期,且b-a為半周期,再根據(jù)f(x1)=f(x2)時(shí)f(x1+x2)的值求出φ的值,從而寫(xiě)出f(x)的解析式,判斷f(x)的單調(diào)性.
解答 解:∵f(x)=Asin(2x+φ),∴函數(shù)最小正周期為T(mén)=π;
由圖象得A=2,且f(a)=f(b)=0,
∴$\frac{1}{2}$•$\frac{2π}{ω}$=b-a,解得b-a=$\frac{π}{2}$;
又x1,x2∈[a,b],且f(x1)=f(x2)時(shí),有f(x1+x2)=$\sqrt{3}$,
∴sin[2(x1+x2)+φ]=$\frac{\sqrt{3}}{2}$,即2(x1+x2)+φ=$\frac{2π}{3}$,
且sin(2•$\frac{{x}_{1}{+x}_{2}}{2}$+φ)=1,即2•$\frac{{x}_{1}{+x}_{2}}{2}$+φ=$\frac{π}{2}$,
解得φ=$\frac{π}{3}$,
∴f(x)=2sin(2x+$\frac{π}{3}$);
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z,
∴-$\frac{5π}{6}$+2kπ≤2x≤$\frac{π}{6}$+2kπ,k∈Z,
解得-$\frac{5π}{12}$+kπ≤x≤$\frac{π}{12}$+kπ,k∈Z,
∴函數(shù)f(x)在區(qū)間[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ],k∈Z上是單調(diào)增函數(shù),
∴f(x)在區(qū)間(-$\frac{5π}{12}$,$\frac{π}{12}$)上是單調(diào)增函數(shù).
故選:B.
點(diǎn)評(píng) 本題考查了正弦型三角函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 5 | C. | $\sqrt{5}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | $\frac{3}{8}$ | C. | $-3或\frac{3}{8}$ | D. | $3或-\frac{3}{8}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com