為了解某校高三學(xué)生的視力情況,隨機地抽查了該校100名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,則視力在4.7到4.8之間的學(xué)生數(shù)為      (    )
A.24 B.23 C.22   D.21
C
解:因為由頻率分布直方圖知組矩為0.1,4.3~4.4間的頻數(shù)為100×0.1×0.1=1.
4.4~4.5間的頻數(shù)為100×0.1×0.3=3.
又前4組的頻數(shù)成等比數(shù)列,∴公比為3.
根據(jù)后6組頻數(shù)成等差數(shù)列,且共有100-13=87人.
從而4.6~4.7間的頻數(shù)最大,且為1×33=27,∴頻率為0.27
且公差d=-5,這樣可知解得4.7到4.8之間的學(xué)生數(shù)為22,選C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的通項是關(guān)于x的不等式  的解集中整數(shù)的個數(shù).
(1)求并且證明是等差數(shù)列;
(2)設(shè)m、k、p∈N*,m+p=2k,求證:
(3)對于(2)中的命題,對一般的各項均為正數(shù)的等差數(shù)列還成立嗎?如果成立,
請證明你的結(jié)論,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)數(shù)列的首項,且滿足,則數(shù)列的前10項和為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知公差不為零的等差數(shù)列的前4項和為10,且成等比數(shù)列.
(Ⅰ)求通項公式;
(Ⅱ)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的前項和為,且.
(I)求數(shù)列的通項公式;
(II)若數(shù)列滿足,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列的前三項與數(shù)列的前三項對應(yīng)相同,且對任意的都成立,數(shù)列是等差數(shù)列
(1)  求數(shù)列的通項公式;
(2)  是否存在使得?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在⊿ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,A<B<C,A,B,C成等差數(shù)列,公差為,且也成等差數(shù)列.
(I)求;
(II)若,求⊿ABC的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列中,,且滿足
(I)求數(shù)列的通項公式;
(II)設(shè)為非零整數(shù),),試確定的值,使得對任意,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,已知等于(  )
A.45B.43C.42  D.40

查看答案和解析>>

同步練習(xí)冊答案