【題目】已知為坐標(biāo)原點(diǎn),橢圓的左,右焦點(diǎn)分別為,,點(diǎn)又恰為拋物線的焦點(diǎn),以為直徑的圓與橢圓僅有兩個(gè)公共點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與相交于,兩點(diǎn),記點(diǎn),到直線的距離分別為,,.直線與相交于,兩點(diǎn),記,的面積分別為,.
(ⅰ)證明:的周長(zhǎng)為定值;
(ⅱ)求的最大值.
【答案】(1);(2)(i)詳見(jiàn)解析;(ii).
【解析】
(1)由已知求得,可得,又以為直徑的圓與橢圓僅有兩個(gè)公共點(diǎn),知,從而求得與的值,則答案可求;
(2)由題意,為拋物線的準(zhǔn)線,由拋物線的定義知,,結(jié)合,可知等號(hào)當(dāng)且僅當(dāng),,三點(diǎn)共線時(shí)成立.可得直線過(guò)定點(diǎn),根據(jù)橢圓定義即可證明為定值;
若直線的斜率不存在,則直線的方程為,求出與可得;若直線的斜率存在,可設(shè)直線方程為,,,,,,,,,方便聯(lián)立直線方程與拋物線方程,直線方程與橢圓方程,利用弦長(zhǎng)公式求得,,可得,由此可求的最大值.
解:(1)因?yàn)?/span>為拋物線的焦點(diǎn),故
所以
又因?yàn)橐?/span>為直徑的圓與橢圓僅有兩個(gè)公共點(diǎn)知:
所以,
所以橢圓的標(biāo)準(zhǔn)方程為:
(2)(。┯深}知,因?yàn)?/span>為拋物線的準(zhǔn)線
由拋物線的定義知:
又因?yàn)?/span>,等號(hào)當(dāng)僅當(dāng),,三點(diǎn)共線時(shí)成立
所以直線過(guò)定點(diǎn)
根據(jù)橢圓定義得:
(ⅱ)若直線的斜率不存在,則直線的方程為
因?yàn)?/span>,,所以
若直線的斜率存在,則可設(shè)直線,設(shè),
由得,
所以,
設(shè),,
由得,
則,
所以
則
綜上知:的最大值等于
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第18屆國(guó)際籃聯(lián)籃球世界杯(世界男子籃球錦標(biāo)賽更名為籃球世界杯后的第二屆世界杯)于2019年8月31日至9月15日在中國(guó)的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.中國(guó)隊(duì)12名球員在第一場(chǎng)和第二場(chǎng)得分的莖葉圖如圖所示,則下列說(shuō)法錯(cuò)誤的是( )
A.第一場(chǎng)得分的中位數(shù)為B.第二場(chǎng)得分的平均數(shù)為
C.第一場(chǎng)得分的極差大于第二場(chǎng)得分的極差D.第一場(chǎng)與第二場(chǎng)得分的眾數(shù)相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象上有且僅有兩個(gè)不同的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在的圖象上,則實(shí)數(shù)的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若an>0,a1=1,且2Sn=an(an+t)(t∈R,n∈N*),則S100=_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀(jì)首先提出了星等這個(gè)概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計(jì)在天體光度測(cè)量中的應(yīng)用,英國(guó)天文學(xué)家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來(lái)描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的倍,則與最接近的是(當(dāng)較小時(shí), )
A.1.24B.1.25C.1.26D.1.27
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年是中國(guó)傳統(tǒng)的農(nóng)歷“鼠年”,有人用3個(gè)圓構(gòu)成“卡通鼠”的形象,如圖:是圓的圓心,圓過(guò)坐標(biāo)原點(diǎn);點(diǎn)、均在軸上,圓與圓的半徑都等于2,圓圓均與圓外切.已知直線過(guò)點(diǎn).
(1)若直線與圓、圓均相切,則截圓所得弦長(zhǎng)為__________;
(2)若直線截圓、圓、圓所得弦長(zhǎng)均等于,則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)春節(jié)期間推出一項(xiàng)優(yōu)惠活動(dòng),活動(dòng)規(guī)則如下:消費(fèi)額每滿300元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤(pán)一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在區(qū)域Ⅰ返券60元;停在區(qū)域Ⅱ返券30元;停在區(qū)域Ⅲ不返券.例如:消費(fèi)600元,可抽獎(jiǎng)2次,所獲得的返券金額是兩次金額之和.
(Ⅰ)若某位顧客消費(fèi)300元,求返券金額不低于30元的概率;
(Ⅱ)若某位顧客恰好消費(fèi)600元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有一個(gè)“引葭赴岸”問(wèn)題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問(wèn)水深、葭長(zhǎng)各幾何?”其意思為“今有水池1丈見(jiàn)方(即尺),蘆葦生長(zhǎng)在水的中央,長(zhǎng)出水面的部分為1尺.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問(wèn)水深、蘆葦?shù)拈L(zhǎng)度各是多少?假設(shè),現(xiàn)有下述四個(gè)結(jié)論:
①水深為12尺;②蘆葦長(zhǎng)為15尺;③;④.
其中所有正確結(jié)論的編號(hào)是( )
A.①③B.①③④C.①④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年電子商務(wù)蓬勃發(fā)展,現(xiàn)從某電子商務(wù)平臺(tái)評(píng)價(jià)系統(tǒng)中隨機(jī)選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果顯示:網(wǎng)購(gòu)者對(duì)商品的滿意率為0.70,對(duì)快遞的滿意率為0.60,其中對(duì)商品和快遞都滿意的交易為80次.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并回答在犯錯(cuò)誤的概率不超過(guò)0.10的前提下,能否認(rèn)為“網(wǎng)購(gòu)者對(duì)商品滿意與對(duì)快遞滿意之間有關(guān)系”?
對(duì)快遞滿意 | 對(duì)快遞不滿意 | 合計(jì) | |
對(duì)商品滿意 | 80 | ||
對(duì)商品不滿意 | |||
合計(jì) | 200 |
(2)為進(jìn)一步提高購(gòu)物者的滿意度,平臺(tái)按分層抽樣方法從200次交易中抽取10次交易進(jìn)行問(wèn)卷調(diào)查,詳細(xì)了解滿意與否的具體原因,并在這10次交易中再隨機(jī)抽取2次進(jìn)行電話回訪,聽(tīng)取購(gòu)物者意見(jiàn).求電話回訪的2次交易至少有一次對(duì)商品和快遞都滿意的概率.
附:(其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com