11.已知函數(shù)f(x)(x∈R)是偶函數(shù),函數(shù)f(x-2)是奇函數(shù),且f(4)=1,則f(2016)=( 。
A.2016B.-2016C.1D.-1

分析 根據(jù)函數(shù)的奇偶性求出函數(shù)的周期,從而求出函數(shù)值即可.

解答 解:∵f(x-2)為奇函數(shù),
∴f(x-2)=-f(-x-2),
∴f(x+2-2)=-f[-(x+2)-2],
∴f(x)=-f(-x-4),
∴f(x-4)=-f[-(x-4)-4],
∴f(x-4)=-f(-x),
∴f(x-4)=-f(x),
而f(x)是偶函數(shù),
∴f(x-4-4)=-f(x-4),
∴f(x-8)=-[-f(x)],
∴f(x-8)=f(x),
∴周期為8,
∴f(2016)=f(0)=f(-8)=-f(4)=-1,
故選:D.

點(diǎn)評 本題考查了函數(shù)的周期性和函數(shù)的奇偶性,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,F(xiàn)1,F(xiàn)2是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右兩個焦點(diǎn),|F1F2|=4,長軸長為6,又A,B分別是橢圓C上位于x軸上方的兩點(diǎn),且滿足$\overrightarrow{A{F_1}}$=2$\overrightarrow{B{F_2}}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求直線AF1的方程;
(Ⅲ)求平行四邊形AA1B1B的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.過(0,$\sqrt{2}$)斜率為k的直線l與橢圓$\frac{x^2}{2}$+y2=1交于不同兩點(diǎn)P、Q.
(1)求k取值范圍;
(2)是否存在k使得向量$\overrightarrow{OP}$•$\overrightarrow{OQ}$=1?若存在,求出k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.關(guān)于f(x)=3sin(2x+$\frac{π}{4}$)有以下命題,
①若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z);
②f(x)圖象與g(x)=3cos(2x-$\frac{π}{4}$)圖象相同;
③f(x)在區(qū)間[-$\frac{7π}{8}$,-$\frac{3π}{8}$]是減函數(shù);
④f(x)圖象關(guān)于點(diǎn)(-$\frac{π}{8}$,0)對稱.
其中正確的命題序號是( 。
A.②③④B.①④C.①②③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=$\left\{\begin{array}{l}({1-a})x+2a,x<1\\ lnx,x≥1\end{array}$的值域為R,則a的取值范圍是-1≤a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.進(jìn)位制轉(zhuǎn)化:1101(2)=13(10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時,不等式f(x)+xf′(x)<0成立,若a=(0.33)f(0.33),b=(logπ3)f(logπ3),c=(log3$\frac{1}{9}$)f(log3$\frac{1}{9}$),則a,b,c間的大小關(guān)系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知矩形ABCD的邊AB=4,AD=1,點(diǎn)P為邊AB上的一動點(diǎn),則當(dāng)∠DPC最大時,線段AP的長為( 。
A.1或3B.1.5或2.5C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1的一條漸近線過點(diǎn)($\sqrt{2}$,1),則此雙曲線的一個焦點(diǎn)坐標(biāo)是( 。
A.($\sqrt{2},0$)B.(2,0)C.($\sqrt{6},0$)D.($\sqrt{10},0$)

查看答案和解析>>

同步練習(xí)冊答案