4.已知$\overrightarrow{AB}$=(1,1),$\overrightarrow{BC}$=(x,-3),若$\overrightarrow{AC}$⊥$\overrightarrow{AB}$,則x=(  )
A.3B.1C.-3或2D.-4或1

分析 先利用向量的運(yùn)算法則求出$\overrightarrow{AC}$,再由向量垂直的性質(zhì)能求出結(jié)果.

解答 解:∵$\overrightarrow{AB}$=(1,1),$\overrightarrow{BC}$=(x,-3),
∴$\overrightarrow{AC}$=$\overrightarrow{AB}+\overrightarrow{BC}$=(1+x,-2),
∵$\overrightarrow{AC}$⊥$\overrightarrow{AB}$,
∴$\overrightarrow{AC}•\overrightarrow{AB}$=1+x-2=0,
解得x=1.
故選:B.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量的運(yùn)算法則和向量垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,a=1,b=$\sqrt{3}$,A=30°,則角C=( 。
A.60°B.30°或90°C.30°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知過(guò)點(diǎn)P(1,0)的直線l交圓O:x2+y2=1于A,B兩點(diǎn),$|AB|=\sqrt{2}$,則直線l的方程為x-y-1=0或x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.直三棱柱A1B1C1-ABC,∠BCA=90°,點(diǎn)D1,F(xiàn)1分別是A1B1,A1C1的中點(diǎn),BC=CA=CC1,則BD1與AF1所成角的余弦值是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{30}}}{10}$C.$\frac{{\sqrt{30}}}{15}$D.$\frac{{\sqrt{15}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$的焦點(diǎn)到漸近線的距離為( 。
A.$2\sqrt{3}$B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow$=(0,cosθ),θ∈[-$\frac{π}{2}$,$\frac{π}{2}$],則|$\overrightarrow{a}$+$\overrightarrow$|的取值范圍是( 。
A.[0,$\sqrt{2}$]B.[0,2]C.[1,2]D.[$\sqrt{2}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在三棱錐P-ABC中,PA⊥平面ABC,PA=2$\sqrt{3}$,BC=2,則三棱錐P-ABC的外接球的表面積的最小值為( 。
A.13πB.14πC.15πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知點(diǎn)A的坐標(biāo)為(4,1),點(diǎn)B(-7,-2)關(guān)于直線y=x的對(duì)稱點(diǎn)為C.
(Ⅰ)求以A、C為直徑的圓E的方程;
(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)A的直線l與圓E的另一個(gè)交點(diǎn)為D,|AD|=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,O∈AD,AD∥BC,AB⊥AD,AO=AB=BC=1,PO=$\sqrt{2}$,$PC=\sqrt{3}$.
(Ⅰ)證明:平面POC⊥平面PAD;
(Ⅱ)若AD=2,PA=PD,求CD與平面PAB所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案