下列說法:
①①平行投影仍是直線或線段;
②中心投影與平行投影都是空間圖形的基本畫法;
③幾何體在平行投影與中心投影下有不同的表現(xiàn)形式;
其中正確的說法有(  )
A、0B、1C、2D、3
考點:命題的真假判斷與應用
專題:閱讀型,空間位置關系與距離
分析:本題考查平行投影和中心投影的關系,從投影線開始,兩者的投影線是有區(qū)別的,平行投影的投影線互相平行,中心投影的投影線交于一點,它們都是空間圖形的基本畫法,幾何體在兩種投影下的表現(xiàn)形式有時也不同,即可判斷①不對,②③都對.
解答: 解:對于①,當圖形中的直線或線段不平行于投影線時,直線或線段的平行投影不為直線或線段,
故①不對;
對于②,中心投影與平行投影都是空間圖形的基本畫法,故②對;
對于③,幾何體在平行投影與中心投影下有不同的表現(xiàn)形式,故③對.
故選C.
點評:本題考查投影的概念和運用,考查直線或線段以及幾何體的投影,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x+y+z=1,求xy2z3的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
x
+2x-a>0,已知x>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c都是正數(shù),x,y,z∈R,且a+b+c=1,ax+by+cz=1,則函數(shù)f(x,y,z)=ax2+by2+cz2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
cos2x+
3
2
sinxsin(
π
2
+x)+1.
(1)求函數(shù)f(x)的最小正周期以及區(qū)間[0,
π
2
]上的最值,并指出相應的x值;
(2)將函數(shù)f(x)的圖象向左平移φ(0<φ<
π
2
)個單位后所得函數(shù)圖象關于y軸對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當0°≤α≤180°時,方程x2cosα+y2sinα=1所表示的曲線的形狀怎樣的?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,且在(0,+∞)上是單調(diào)增函數(shù).
(1)若f(x)是R上的奇函數(shù),x>0時,f(x)=x2+2x+3.求函數(shù)f(x)的解析式.
(2)若f(3a2-a+1)>f(a2+3a+7),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax+b的圖象如圖所示,其中a,b為常數(shù),則下列結(jié)論正確的是(  )
A、a>1,b<0
B、a>1,b>0
C、0<a<1,b>0
D、0<a<1,b<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)對任意的x,y∈R都有f(2x+y)=2f(x)+f(y),且當x>0,f(x)<0.
(1)求證:f(3x)=3f(x),f(2x)=2f(x);
(2)判斷f(x)在(-∞,+∞)上的單調(diào)性并證明;
(3)若f(6)=-1,解不等式f(log2
x-2
x
)+6f(log2
3x
)<-
1
6

查看答案和解析>>

同步練習冊答案