在△中,是角對應(yīng)的邊,向量,,且
(1)求角;
(2)函數(shù)的相鄰兩個極值的橫坐標(biāo)分別為、,求的單調(diào)遞減區(qū)間.

(1);(2)

解析試題分析:本題主要考查向量的數(shù)量積、余弦定理、誘導(dǎo)公式、降冪公式、兩家和與差的正弦公式、三角函數(shù)圖像、三角函數(shù)的性質(zhì)等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力和數(shù)形結(jié)合思想.第一問,利用向量的數(shù)量積轉(zhuǎn)化表達(dá)式,由于得到的表達(dá)式的形式類似于余弦定理,所以利用余弦定理求角C;第二問,利用三角形的內(nèi)角和為,轉(zhuǎn)化,將C角代入再利用倍角公式、降冪公式、兩角和的正弦公式化簡表達(dá)式為的形式,數(shù)形結(jié)合得到三角函數(shù)的周期,確定解析式后,再數(shù)形結(jié)合求函數(shù)的單調(diào)減區(qū)間.
(1)因為,所以,
,.       5分
(2)
=
=
=           8分
因為相鄰兩個極值的橫坐標(biāo)分別為,所以的最小正周期為,
所以        10分

所以的單調(diào)遞減區(qū)間為.       12分
考點:向量的數(shù)量積、余弦定理、誘導(dǎo)公式、降冪公式、兩家和與差的正弦公式、三角函數(shù)圖像、三角函數(shù)的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),點A、B分別是函數(shù)圖像上的最高點和最低點.
(1)求點A、B的坐標(biāo)以及·的值;
(2)設(shè)點A、B分別在角、的終邊上,求tan()的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知角的終邊落在直線上,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知角的終邊與單位圓交于點P(,).
(1)寫出、值;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(l)求函數(shù)的最小正周期;
(2)當(dāng)時,求函數(shù)f(x)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)求函數(shù)的值域;
(2)若函數(shù)的最小正周期為,則當(dāng)時,求的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:函數(shù)
(1)求函數(shù)的周期T,與單調(diào)增區(qū)間.
(2)函數(shù)的圖象有幾個公共交點.
(3)設(shè)關(guān)于的函數(shù)的最小值為,試確定滿足的值,并對此時的值求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知M是橢圓=1上在第一象限的點,A(2,0),B(0,2)
是橢圓兩個頂點,求四邊形OAMB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,且,求的值。

查看答案和解析>>

同步練習(xí)冊答案