已知函數(shù),其中a>0.

(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;

(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.

答案:
解析:

  解:(Ⅰ)當(dāng)時(shí),,

  所以曲線在點(diǎn)處的切線方程為,即

  (Ⅱ)

  令,解得.針對(duì)區(qū)間,需分兩種情況討論:

  (1)若,則

  當(dāng)變化時(shí),的變化情況如下表:

  所以在區(qū)間上的最小值在區(qū)間的端點(diǎn)得到.因此在區(qū)間上,恒成立,等價(jià)于

  

  即解得,又因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4336/0016/82410c3a3648b9523b0ba2286193a9a4/C/Image66.gif" width=61 height=18>,所以

  (2)若,則

  當(dāng)變化時(shí),的變化情況如下表:

  所以在區(qū)間上的最小值在區(qū)間的端點(diǎn)或處得到.

  因此在區(qū)間上,恒成立,等價(jià)于

  即

  解得,又因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4336/0016/82410c3a3648b9523b0ba2286193a9a4/C/Image74.gif" width=37 height=18>,所以

  綜合(1),(2),a的取值范圍為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)(其中A>0,)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)已知函數(shù)(其中A>0,)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.(Ⅰ)求的解析式;(Ⅱ)當(dāng),求的值域;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省濟(jì)寧市汶上一中高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)若a=2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[2,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶七中高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(1)、若x=1是y=f(x)的一個(gè)極值點(diǎn),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)、若曲線y=f(x)與x軸有3個(gè)不同交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省武漢市武昌區(qū)高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),其中a>0且a≠1.
(1)求f(x)的解析式;
(2)判斷并證明f(x)的單調(diào)性;
(3)當(dāng)x∈(-∞,2)時(shí),f(x)-4的值恒為負(fù)數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案