設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=a,an+1=Sn+3n,n∈N*
(1)記bn=Sn-3n,求數(shù)列{bn}的通項(xiàng)公式;
(2)若an+1≥an,n∈N*,求a的取值范圍.
考點(diǎn):數(shù)列遞推式,數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得Sn+1=2Sn+3n,由此得Sn+1-3n+1=2(Sn-3n),從而能求出數(shù)列{bn}的通項(xiàng)公式.
(2)由Sn=3n+(a-3)•2n-1,n∈N*,得an=Sn-Sn-1=2×3n-1+(a-3)•2n-2,從而an+1-an=2n-2[12•(
3
2
)n-2+a-3]
,當(dāng)n≥2時(shí),an+1≥an,等價(jià)于12•(
3
2
)n-2+a-3≥0
,由此能求出a的取值范圍.
解答: 解:(1)依題意,Sn+1-Sn=an+1=Sn+3n,
∴Sn+1=2Sn+3n
由此得Sn+1-3n+1=2(Sn-3n),
又S1-3=a-3,
∴{Sn-3n}是首項(xiàng)為a-3,公比為2的等比數(shù)列,
∴所求通項(xiàng)公式為bn=Sn-3n=(a-3)•2n-1,n∈N*
(2)由(1)知Sn=3n+(a-3)•2n-1,n∈N*
于是,當(dāng)n≥2時(shí),
an=Sn-Sn-1=3n+(a-3)×2n-1-3n-1-(a-3)×2n-2
=2×3n-1+(a-3)•2n-2
an+1-an=4×3n-1+(a-3)•2n-2
=2n-2[12•(
3
2
)n-2+a-3]
,
當(dāng)n≥2時(shí),an+1≥an,等價(jià)于12•(
3
2
)n-2+a-3≥0
,
解得a≥-9.
又a2=a1+3>a1
∴a的取值范圍是[-9,+∞).
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式的求法,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要注意構(gòu)造法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位復(fù)數(shù)z=
1+ai
1+i
對應(yīng)的點(diǎn)位于第四象限,則實(shí)數(shù)a的取值范圍是( 。
A、(-1,+∞)
B、(-∞,1)
C、(-1,1)
D、(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a>b是|a|>b的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)切圓圓心為D,AB=4,AC=5,BC=6,若在△ABC內(nèi)任取一點(diǎn)P,則P在△DBC內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,4Sn=an2+2an-3,且a1,a2,a3,a4,a5成等比數(shù)列,當(dāng)n≥5時(shí),an>0.
(1)求證:當(dāng)n≥5時(shí) {an}成等差數(shù)列;
(2)求{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在同一坐標(biāo)系中,函數(shù)y=ax+a與y=ax的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,sin2A+sin2B+sin2C=2
3
sinAsinBsinC,則△ABC的形狀是( 。
A、直角三角形
B、等腰直角三角形
C、鈍角三角形
D、正三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知常數(shù)a>0,函數(shù)f(x)=ln(1+x)-
2ax
x+2

(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,求f(x1)+f(x2),并注明a的取值范圍;
(3)若f′(x)是f(x)的導(dǎo)函數(shù),f′(x)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2-4
x-2
與函數(shù)f(x)=x+2表示同一個(gè)函數(shù).
 
(判斷對錯(cuò)).

查看答案和解析>>

同步練習(xí)冊答案