10.動點(diǎn)P從正方體ABCD-A1B1C1D1的頂點(diǎn)A出發(fā),沿著棱運(yùn)動到頂點(diǎn)C1后再到A,若運(yùn)動中恰好經(jīng)過6條不同的棱,稱該路線為“最佳路線”,則“最佳路線”的條數(shù)為18(用數(shù)字作答).

分析 根據(jù)分步計(jì)數(shù)和分類計(jì)數(shù)原理即可求出答案

解答 解:從A點(diǎn)出發(fā)有3種方法,(A1,B,D),假如選擇了A1,則有2種選法(B1,D1)到C1,再從C1出發(fā),若選擇了(B1,或D1),則只有一種方法到A,若選擇了C,則有2種方法到A,
故“最佳路線”的條數(shù)為C31C21(1+2)=18種,
故答案為:18

點(diǎn)評 本題考查排列、組合的應(yīng)用,涉及棱柱的結(jié)構(gòu)特征,關(guān)鍵掌握分部和分類計(jì)算原理,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a=40.1,b=log40.1,c=0.4,則( 。
A.a>b>cB.b>a>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,已知曲線C:$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(a為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線l的極坐標(biāo)方程為$\frac{{\sqrt{2}}}{2}ρcos(θ+\frac{π}{4})=-1$.
(1)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(2)過點(diǎn)M(-1,0)且與直線l平行的直線l1交C于A,B兩點(diǎn),求點(diǎn)M到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線L的參數(shù)方程為$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=$\frac{2}{\sqrt{1+3co{s}^{2}θ}}$.
(Ⅰ)直接寫出直線L的極坐標(biāo)方程和曲線C的普通方程;
(Ⅱ)過曲線C上任意一點(diǎn)P作與L夾角為$\frac{π}{3}$的直線l,設(shè)直線l與直線L的交點(diǎn)為A,求|PA|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知橢圓C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$的左、右頂點(diǎn)分別為A、B,F(xiàn)為橢圓C的右焦點(diǎn),圓x2+y2=4上有一動點(diǎn)P,P不同于A,B兩點(diǎn),直線PA與橢圓C交于點(diǎn)Q,則$\frac{{k}_{PB}}{{k}_{QF}}$的取值范圍是(-∞,0)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.否定結(jié)論“至多有一個解”的說法中,正確的是( 。
A.有一個解B.有兩個解C.至少有三個解D.至少有兩個解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3-x2-x+a
(1)求f(x)的極值
(2)曲線y=f(x)與x軸僅有一個交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)$f(x)={log_a}({x^2}+ax+4)(a>0,a≠1)$沒有最小值,則a的取值集合是{a|0<a<1或a≥4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2ax3-(3a+1)x2+2x+5;
(1)a為何值時,函數(shù)f(x)沒有極值點(diǎn);
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案