6.4名同學(xué)分別報(bào)名參加數(shù)、理、化競(jìng)賽,每人限報(bào)其中的1科,不同的報(bào)名方法種數(shù)( 。
A.24B.4C.43D.34

分析 根據(jù)題意,分析每一個(gè)人的選擇參加競(jìng)賽的情況數(shù)目,由分步計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,4名同學(xué)分別報(bào)名參加數(shù)、理、化競(jìng)賽,
每人都有3種選擇方法,
則不同的報(bào)名方法種數(shù)有3×3×3×3=34種;
故選:D.

點(diǎn)評(píng) 本題考查分步計(jì)數(shù)原理的應(yīng)用,注意沒(méi)有要求數(shù)、理、化三科競(jìng)賽都有人參加.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=xlnx,(e=2.718…).
(1)設(shè)g(x)=f(x)+x2-2(e+1)x+6,
①記g(x)的導(dǎo)函數(shù)為g'(x),求g'(e);
②若方程g(x)-a=0有兩個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;
(2)若在[1,e]上存在一點(diǎn)x0使$m({f({x_0})-1})>x_0^2+1$成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個(gè)銳角,則f(sinα)與f(cosβ)的大小關(guān)系是( 。
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)=f(cosβ)D.f(sinα)≥f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在直角坐標(biāo)系xOy中,已知圓C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+cosϕ}\\{y=2+sinϕ}\end{array}}\right.$(ϕ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線C2的極坐標(biāo)方程為ρcosθ+2=0.
(1)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
(2)若直線C3的極坐標(biāo)方程為$θ=\frac{π}{4}({ρ∈R})$,設(shè)C3與C1的交點(diǎn)為M,N,P為C2上的一點(diǎn),且△PMN的面積等于1,求P點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)全集U=R,集合A={3,4,5,6,7},B={x|3<x<7},則A∩(∁UB)=( 。
A.{3,5,7}B.{3,7}C.{4,5,6}D.{5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若O為△ABC所在平面內(nèi)任一點(diǎn),且滿足$\overrightarrow{BC}•(\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA})=0$,則△ABC的形狀為(  )
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知q>0的等比數(shù)列{an},若a3,a7是方程x2-5x+4=0的兩個(gè)根,則a5=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.等差數(shù)列{an}中,首項(xiàng)a1<0,公差d>0,Sn為其前n項(xiàng)和,則點(diǎn)(n,Sn)可能在下列哪條曲線上( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.過(guò)原點(diǎn)作曲線y=ex的切線,則切點(diǎn)的坐標(biāo)為(1,e),切線的斜率為e.

查看答案和解析>>

同步練習(xí)冊(cè)答案