14.在如圖所示的四棱錐P-ABCD中,四邊形ABCD為正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分別為PD,CD,AD的中點,$\overrightarrow{PF}$=3$\overrightarrow{FD}$.
(1)證明:PB∥平面FMN;
(2)若PA=AB,求二面角E-AC-B的余弦值.

分析 (1)連結(jié)BD,分別交AC、MN于點O,G,連結(jié)EO、FG,推導出EO∥PB,F(xiàn)G∥EO,PB∥FG,由此能證明PB∥平面FMN.
(2)以A為坐標原點,AB,AD,AP所在直線分別為x軸,y軸,z軸,建立空間直角坐標系,由此能求出二面角E-AC-B的余弦值.

解答 證明:(1)連結(jié)BD,分別交AC、MN于點O,G,連結(jié)EO、FG,
∵O為BD中點,E為PD中點,∴EO∥PB,
又$\overrightarrow{PF}$=3$\overrightarrow{FD}$,∴F為ED中點,又CM=MD,AN=DN,∴G為OD的中點,
∴FG∥EO,∴PB∥FG,
∵FG?平面FMN,PB?平面FMN,
∴PB∥平面FMN.
解:(2)∵BC⊥平面PAB,∴BC⊥PA,又PA⊥CD,BC∩CD=C,
∴PA⊥平面ABCD,
如圖,以A為坐標原點,AB,AD,AP所在直線分別為x軸,y軸,z軸,建立空間直角坐標系,
設(shè)PA=AB=2,則A(0,0,0),B(2,0,0),C(2,2,0),E(0,1,1),
則$\overrightarrow{AC}$=(2,2,0),$\overrightarrow{AE}$=(0,1,1),
平面ABCD的一個向向量$\overrightarrow{m}$=(0,0,1),
設(shè)平面AEC的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=y+z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2x+2y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,1),
∴cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$,
由圖知二面角E-AC-B為鈍角,
∴二面角E-AC-B的余弦值為-$\frac{\sqrt{3}}{3}$.

點評 本題考查線面平行的證明,考查二面角的余弦值的求法,是中檔題,解題要認真審題,注意向量法的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖,設(shè)O是正六邊形ABCDEF的中心,則圖中與$\overrightarrow{OA}$相等的向量是( 。
A.$\overrightarrow{OB}$B.$\overrightarrow{OD}$C.$\overrightarrow{EF}$D.$\overrightarrow{BC}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如圖是200輛汽車在某紅綠燈處的速度頻率分布直方圖,則速度眾數(shù)大約是50.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,直三棱柱ABC-A1B1C1中,底面是∠A=90°的直角三角形,且AB=1,BB1=2,直線B1C與平面ABC成30°角.
(1)求異面直線AC1與B1C所成角;
(2)求點B到平面AB1C的距離;
(3)求二面角B-B1C-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知一個幾何體的三視圖如圖所示,則該幾何體表面積為( 。
A.B.$\frac{15π}{4}$C.$\frac{3\sqrt{3}π}{4}$D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知a為實常數(shù),f(x)=|x+2a|,f(x)<4-2a的解集為{x|-4<x<0}.
(1)求a的值;
(2)若f(x)-f(-2x)≤x+m對任意實數(shù)x都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,m,n是兩條相交直線,l1,l2是與m,n都垂直的兩條直線,且直線l與l1,l2都相交,求證:∠1=∠2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.關(guān)于x的不等式|2x+3|≥3的解集是(-∞,-3]∪[0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$)-1,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若函數(shù)F(x)=cos(2x-$\frac{π}{3}$)+3|f(x)+1|-m,x∈[-$\frac{π}{2}$,$\frac{π}{3}$]有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案