A. | a<b<c | B. | b<c<a | C. | c<b<a | D. | c<a<b |
分析 令g(x)=f(x)cosx,則g′(x)=f′(x)cosx-f(x)sinx>0,當(dāng)0<x<π時(shí),g(x)在(0,π)遞增,即可判斷出結(jié)論.
解答 解:令g(x)=f(x)cosx,則g′(x)=f′(x)cosx-f(x)sinx>0,
當(dāng)0<x<π時(shí),g(x)在(0,π)遞增,
∵$0<\frac{π}{3}<\frac{π}{2}$<$\frac{5π}{6}$<π,
∴$cos\frac{π}{3}$$f(\frac{π}{3})$<$cos\frac{π}{2}f(\frac{π}{2})$<$cos\frac{5π}{6}f(\frac{5π}{6})$,
化為:$\frac{1}{2}$$f(\frac{π}{3})$<0<$-\frac{\sqrt{3}}{2}$$f(\frac{5π}{6})$,
即a<b<c.
故選:A.
點(diǎn)評(píng) 本題考查了構(gòu)造函數(shù)方法、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、三角函數(shù)求值考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 銳角三角形 | ||
C. | 鈍角三角形 | D. | 以上情況都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-3,3] | B. | [-1,2] | C. | [-3,2] | D. | (-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{25}$+y2=1 | B. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{24}$=1 | D. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m∥α,m∥β,α∩β=n,則m∥n | B. | 若α⊥β,m⊥α,n⊥β,則m⊥n | ||
C. | 若α⊥β,α⊥γ,β∩γ=m,則m⊥α | D. | 若α∥β,m∥α,則m∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 8 | C. | $\frac{13}{2}$ | D. | $\frac{11}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com