19.已知拋物線C1:y2=ax(a>0)的焦點(diǎn)與雙曲線C2:$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$的右焦點(diǎn)重合,記為F點(diǎn),點(diǎn)M與點(diǎn)P(4,6)分別為曲線C1,C2上的點(diǎn),則|MP|+|MF|的最小值為( 。
A.$\frac{5}{2}$B.8C.$\frac{13}{2}$D.$\frac{11}{2}$

分析 求出雙曲線的焦點(diǎn)坐標(biāo),得出拋物線方程,設(shè)點(diǎn)M在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|MF|=|MD|進(jìn)而把問題轉(zhuǎn)化為求|MP|+|MD|取得最小,進(jìn)而可推斷出當(dāng)D,M,P三點(diǎn)共線時(shí)|MP|+|MD|最小,答案可得.

解答 解:(4,6)代入雙曲線C2:$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$,可得$\frac{16}{4}-\frac{36}{^{2}}=1$,∴b2=12,
∴c=4,∴F(4,0),
∵拋物線C1:y2=ax(a>0)的焦點(diǎn)與雙曲線C2:$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$的右焦點(diǎn)重合,
∴a=16,拋物線方程為y2=16x,
設(shè)點(diǎn)M在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|MF|=|MD|,
∴要求|MP|+|MF|取得最小值,即求|MP|+|MD|取得最小,
當(dāng)D,M,P三點(diǎn)共線時(shí)|MP|+|MD|最小,為4+4=8.
故選:B.

點(diǎn)評 本題考查雙曲線的方程與性質(zhì),考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,判斷當(dāng)D,M,P三點(diǎn)共線時(shí)|PM|+|MD|最小,是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f'(x)是定義在(0,π)上的函數(shù)f(x)的導(dǎo)函數(shù),有f(x)sinx-f'(x)cosx<0,$a=\frac{1}{2}f(\frac{π}{3})$,b=0,$c=-\frac{{\sqrt{3}}}{2}f(\frac{5π}{6})$,則( 。
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓O:x2+y2=1和拋物線E:y=x2-2,O為坐標(biāo)原點(diǎn).
(1)已知直線l和圓O相切,與拋物線E交于M,N兩點(diǎn),且滿足OM⊥ON,求直線l的方程;
(2)過拋物線E上一點(diǎn)P(x0,y0)作兩直線PQ,PR和圓O相切,且分別交拋物線E于Q,R兩點(diǎn),若直線QR的斜率為$-\sqrt{3}$,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=|x-2|-|2x+1|.
(Ⅰ)求不等式f(x)>0的解集;
(Ⅱ)若存在x0∈R,使得f(x0)>2m+1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C的兩個(gè)焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),并且經(jīng)過$P({\sqrt{3},1})$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C的右焦點(diǎn)F作直線l,直線l與橢圓C相交于A、B兩點(diǎn),與圓O:x2+y2=6相交于D、E兩點(diǎn),當(dāng)△OAB的面積最大時(shí),求弦DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,正三角形ABC所在平面與梯形BCDE所在平面垂直,BE∥CD,BE=2CD=4,BE⊥BC,F(xiàn)為棱AB的中點(diǎn).
(1)求證:CF⊥平面ABE;
(2)若直線DA與平面ABC所成的角為30°,求三棱錐D-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若z=(a-1)+ai為純虛數(shù),其中a∈R,則$\frac{a+{i}^{7}}{1+ai}$=( 。
A.-iB.iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(x,1)與向量$\overrightarrow$=(9,x)的夾角為π,則x=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知PD垂直于以AB為直徑的圓O所在的平面,點(diǎn)D在線段AB上,點(diǎn)C為圓O上一點(diǎn),且BD=PD=3,AC=2AD=2.
(Ⅰ)求證:CD⊥平面PAB
(Ⅱ)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

同步練習(xí)冊答案