【題目】函數(shù)y= 的定義域為集合A,集合B={x||x+2|+|x﹣2|>8}.
(1)求集合A,B;
(2)求B∩∪A.
【答案】
(1)解:函數(shù)y= 的定義域為集合A,
∴ ﹣1>0,化簡得 <0,解得﹣1<x<8,
∴A={x|﹣1<x<8};
集合B={x||x+2|+|x﹣2|>8},
當(dāng)x≥2時,x+2+x﹣2>8,解得x>4,
當(dāng)﹣2<x<2是,(x+2)﹣(x﹣2)>8,無解;
當(dāng)x≤﹣2時,﹣(x+2)﹣(x﹣2)>8,解得x<﹣4;
∴B={x|x<﹣4或x>4}
(2)解:UA={x|x≤﹣1或x≥8},
∴B∩∪A={x|x<﹣4或x≥8}
【解析】(1)根據(jù)函數(shù)y的解析式求出定義域得出集合A,利用絕對值的定義求出集合B,(2)根據(jù)補(bǔ)集與交集的定義進(jìn)行計算即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解交、并、補(bǔ)集的混合運(yùn)算(求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐P﹣ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且這四個頂點(diǎn)都在半徑為2的球面上,PA=2PB,則這個三棱錐的三個側(cè)棱長的和的最大值為( 。
A.16
B.
C.
D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶計劃建造一個室內(nèi)面積為800m2的矩形蔬菜溫室,在溫室外,沿左、右兩側(cè)與后側(cè)各保留1m寬的通道,沿前側(cè)保留3m的空地(如圖所示),當(dāng)矩形溫室的長和寬分別為多少時,總占地面積最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P,Q是兩個集合,定義集合P﹣Q={x|x∈P且xQ}為P,Q的“差集”,已知P={x|1﹣ <0},Q={x||x﹣2|<1},那么P﹣Q等于( )
A.{x|0<x<1}
B.{x|0<x≤1}
C.{x|1≤x<2}
D.{x|2≤x<3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的“8”字形曲線是由兩個關(guān)于x軸對稱的半圓和一個雙曲線的一部分組成的圖形,其中上半個圓所在圓方程是x2+y2﹣4y﹣4=0,雙曲線的左、右頂
點(diǎn)A、B是該圓與x軸的交點(diǎn),雙曲線與半圓相交于與x軸平行的直徑的兩端點(diǎn).
(1)試求雙曲線的標(biāo)準(zhǔn)方程;
(2)記雙曲線的左、右焦點(diǎn)為F1、F2 , 試在“8”字形曲線上求點(diǎn)P,使得
∠F1PF2是直角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】理科競賽小組有9名女生、12名男生,從中隨機(jī)抽取一個容量為7的樣本進(jìn)行分析.
(Ⅰ)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可)
(Ⅱ)如果隨機(jī)抽取的7名同學(xué)的物理、化學(xué)成績(單位:分)對應(yīng)如表:
學(xué)生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
物理成績 | 65 | 70 | 75 | 81 | 85 | 87 | 93 |
化學(xué)成績 | 72 | 68 | 80 | 85 | 90 | 86 | 91 |
規(guī)定85分以上(包括85份)為優(yōu)秀,從這7名同學(xué)中再抽取3名同學(xué),記這3名同學(xué)中物理和化學(xué)成績均為優(yōu)秀的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com