一個幾何體三視圖如圖所示,則這個幾何體體積等于( 。
A、
1
2
B、2
C、1
D、4
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:幾何體為四棱錐,根據(jù)三視圖判斷四棱錐的一條側(cè)棱與底面垂直,高為1,四棱錐的底面為直角梯形,判斷直角梯形的兩底邊長及直角腰長,把數(shù)據(jù)代入棱錐的體積公式計算.
解答: 解:由三視圖知:幾何體為四棱錐,且四棱錐的一條側(cè)棱與底面垂直,高為1,
底面為直角梯形,直角梯形的兩底邊長分別為1、2.直角腰長為1,
∴幾何體的體積V=
1
3
×
1+2
2
×1×1=
1
2

故選:A.
點評:本題考查了由三視圖求幾何體的體積,判斷幾何體的形狀及數(shù)據(jù)所對應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由兩個四棱錐組合而成的空間幾何體的三視圖如圖所示,其體積是
 
;表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

路燈距地平面為8m,一個身高為1.75m的人以
5
7
m/s的速率,從路燈在地面上的射影點C處,沿某直線離開路燈,那么人影長度的變化速率v為
 
m/s.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題是( 。
①若命題p:?x<0,x≥sinx,命題q:函數(shù)f(x)=x2-2x僅有兩個零點,則命題¬p∨q為真命題;
②若變量x,y的一組觀測數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)均在直線y=2x+1上,則y與x的線性相關(guān)系數(shù)r=1;
③若a,b∈[0,1],則使不等式a+b<
1
2
成立的概率是
1
4
A、①②B、??①③
C、?②D、??②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD是三視圖如圖所示,則圍成四棱錐P-ABCD的五個面中的最大面積是( 。
A、3B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+2x)8展開式的二項式系數(shù)的最大值為a,系數(shù)的最大值為b,則
b
a
=( 。
A、
128
5
B、
256
7
C、
512
5
D、
128
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個幾何體的三視圖如圖所示(長度單位:cm),則此幾何體的體積是(  )
A、
8
3
cm3
B、
4
3
cm3
C、
2
3
cm3
D、
1
3
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1和F2,離心率e=
2
2
,連接橢圓的四個頂點所得四邊形的面積為4
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A、B是直線l:x=2
2
上的不同兩點,若
AF1
BF2
=0,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且a=2,b=3,cosB=
4
5
,則sinA的值為
 

查看答案和解析>>

同步練習(xí)冊答案