分析 根據(jù)偶函數(shù)f(x)的定義域為R,則?x∈R,都有f(-x)=f(x),建立等式,解之即可求出a,利用分段函數(shù),即可得出結(jié)論..
解答 解:因為函數(shù)f(x)=(x-a)(x+2)是偶函數(shù),
所以?x∈R,都有f(-x)=f(x).
所以?x∈R,都有(-x-a)•(-x+2)=(x-a)•(x+2)
即x2+(a-2)x-2a=x2+(-a+2)x-2a
所以a=2.
g[g(-$\frac{3}{4}$)]=g($lo{g}_{2}\frac{1}{4}$)=g(-2)=2-2=$\frac{1}{4}$
故答案為:2,$\frac{1}{4}$.
點(diǎn)評 本題主要考查了函數(shù)奇偶性的性質(zhì),同時考查了運(yùn)算求解的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | [0,+∞) | C. | [-1,0] | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{5}{e}$,2] | B. | [-$\frac{5}{2e}$,-$\frac{8}{{3{e^2}}}$) | C. | [-$\frac{1}{2}$,-$\frac{8}{{3{e^2}}}$) | D. | [-4e,-$\frac{5}{2e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
語文成績分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) | [100,110) | [110,120] |
頻數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {i} | B. | {i,-i} | C. | {1,-1} | D. | {i,-i,1,-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com