7.設(shè)數(shù)列{an}是首項為1的等差數(shù)列,前n項和Sn,S5=20,則公差為$\frac{3}{2}$.

分析 利用等差數(shù)列的求和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a1=1,S5=20,
∴5+$\frac{5×4}{2}$d=20,解得d=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點評 本題考查了等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x、y滿足$\left\{\begin{array}{l}x-y≥0\\ x+y-4≥0\\ x≤4\end{array}\right.$則4x-y的最小值為(  )
A.4B.6C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知雙曲線C的中心為坐標(biāo)原點,它的焦點F(2,0)到它的一條漸近線的距離為$\sqrt{3}$,則C的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)向量$\overrightarrow{a}$=(n,1),$\overrightarrow$=(2,1),且|$\overrightarrow{a}$-$\overrightarrow$|2=|$\overrightarrow{a}$|2+|$\overrightarrow$|2,則n=( 。
A.-$\frac{1}{2}$B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={-1,0,1},B={x|x=sin$\frac{2k+1}{2}$π,k∈Z},則∁AB=( 。
A.?B.0C.{0}D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4個圖形中,能表示集合M到集合N的函數(shù)關(guān)系的有( 。
A.①②③④B.①②③C.②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|x2-3x+2<0},B={x|y=lg(3-x)},則A∩B=( 。
A.{x|1<x<2}B.{x|1<x<3}C.{x|2<x<3}D.{x|x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C$:\frac{x^2}{a^2}-\frac{y^2}{4}=1$的一條漸近線方程為2x+3y=0,F(xiàn)1,F(xiàn)2分別是雙曲線C的左,右焦點,點P在雙曲線C上,且|PF1|=7,則|PF2|等于( 。
A.1B.13C.4或10D.1或13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線及粗虛線畫出的是某個多面體的三視圖,則該多面體的體積為( 。
A.72B.$90\sqrt{3}$C.$108\sqrt{2}$D.144

查看答案和解析>>

同步練習(xí)冊答案