已知雙曲線,為實(shí)軸頂點(diǎn),是右焦點(diǎn),是虛軸端點(diǎn),
若在線段上(不含端點(diǎn))存在不同的兩點(diǎn),使得構(gòu)成以為斜邊的
直角三角形,則雙曲線離心率的取值范圍是(    )
A.B.C.D.
D

試題分析:由題意知,要使得在線段上(不含端點(diǎn))存在不同的兩點(diǎn),使得構(gòu)成以為斜邊的直角三角形,只需以為直徑的圓與線段相交于兩點(diǎn),且端點(diǎn)不是交點(diǎn)即可,故圓心到直線的距離滿足,即,解得,故
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

[2012·課標(biāo)全國(guó)卷]等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線y2=16x的準(zhǔn)線交于A,B兩點(diǎn),|AB|=4,則C的實(shí)軸長(zhǎng)為(  )
A.B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2014·武漢模擬)已知點(diǎn)P是圓M:x2+(y+m)2=8(m>0,m≠)上一動(dòng)點(diǎn),點(diǎn)N(0,m)是圓M所在平面內(nèi)一定點(diǎn),線段NP的垂直平分線l與直線MP相交于點(diǎn)Q.
(1)當(dāng)P在圓M上運(yùn)動(dòng)時(shí),記動(dòng)點(diǎn)Q的軌跡為曲線Г,判斷曲線Г為何種曲線,并求出它的標(biāo)準(zhǔn)方程.
(2)過(guò)原點(diǎn)斜率為k的直線交曲線Г于A,B兩點(diǎn),其中A在第一象限,且它在x軸上的射影為點(diǎn)C,直線BC交曲線Г于另一點(diǎn)D,記直線AD的斜率為k′,是否存在m,使得對(duì)任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)雙曲線的左、右焦點(diǎn)分別為F1、F2,A是雙曲線漸近線上的一點(diǎn),AF1⊥AF2,原點(diǎn)O到直線AF1的距離為|OF1|,則雙曲線的離心率為(    )
A.+1B.-1C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則的值為( )
A.8B.C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線y2=4x的焦點(diǎn)到雙曲線的漸近線的距離是( 。
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)雙曲線的右焦點(diǎn)F,作圓x2+y2=a2的切線FM交y軸于點(diǎn)P,切圓于點(diǎn)M,,則雙曲線的離心率是(  )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的離心率為,一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則雙曲線的漸近線方程為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)直線L過(guò)雙曲線C的一個(gè)焦點(diǎn),且與C的一條對(duì)稱軸垂直,L與C交于A ,B兩點(diǎn),為C的實(shí)軸長(zhǎng)的2倍,則C的離心率為
A.B.C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案