17.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,已知S2=3,且an+1=Sn+1,n∈N*,則a1=1;Sn=2n-1.

分析 S2=3,且an+1=Sn+1,取n=1,則:a1+a2=3,a2=a1+1,解得a1.n≥2時(shí),an=Sn-1+1,相減可得an+1=2an,再利用等比數(shù)列的求和公式即可得出.

解答 解:∵S2=3,且an+1=Sn+1,取n=1,則:a1+a2=3,a2=a1+1,解得a1=1,a2=2.
n≥2時(shí),an=Sn-1+1,∴an+1-an=an,即an+1=2an
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)為1,公比為2.
∴Sn=$\frac{{2}^{n}-1}{2-1}$=2n-1.
故答案為:1,2n-1.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)向量$\overrightarrow a,\vec b$滿足$|\overrightarrow a|=|\vec b|=1,|2\overrightarrow a-\vec b|=2$,則$|\overrightarrow a+\vec b|$=$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且atanC=2csinA.
(I) 求角C的大;
(II) 求sinA+sinB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,若sin($\frac{3}{2}$B+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,且a+c=2,則△ABC的周長(zhǎng)的取值范圍是[3,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知m、n為空間兩條不同直線,α、β、γ為不同的平面,則下列命題正確的是( 。
A.若α⊥β,a?α,則a⊥βB.若α⊥γ,β⊥γ,則α∥β
C.若α∥β,a?α,b?β,則a∥bD.若m⊥α,m∥n,n∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=$\frac{{{4^x}+a}}{{{2^{x+1}}}}$,h(x)=2f(x)-ax-b.
(Ⅰ)判斷f(x)的奇偶性,并說(shuō)明理由;
(Ⅱ)若f(x)為奇函數(shù),且h(x)在[-1,1]有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義在R上的函數(shù)f(x)和g(x),其各自導(dǎo)函數(shù)f′(x)f和g′(x)的圖象如圖所示,則函數(shù)F(x)=f(x)-g(x)極值點(diǎn)的情況是(  )
A.只有三個(gè)極大值點(diǎn),無(wú)極小值點(diǎn)B.有兩個(gè)極大值點(diǎn),一個(gè)極小值點(diǎn)
C.有一個(gè)極大值點(diǎn),兩個(gè)極小值點(diǎn)D.無(wú)極大值點(diǎn),只有三個(gè)極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax2+2x+3在(-∞,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列命題中,正確的是( 。
A.?x0∈R,sinx0+cos0=$\frac{3}{2}$
B.已知X服從正態(tài)分布N(0,σ2),且p(-2<X≤2)=0.6,則P(X>2)=0.2
C.已知a,b為實(shí)數(shù),則a+b=0的充要條件是$\frac{a}$=-1
D.命題“?x∈R,x2-x+1>0”的否定是“?x0∈R,x2-x+1<0”

查看答案和解析>>

同步練習(xí)冊(cè)答案