設(shè)向量
a
=(sinθ+cosθ,1),
b
=(5,1)垂直,且θ∈(0,π),則tanθ等于
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,三角函數(shù)的求值,平面向量及應(yīng)用
分析:運(yùn)用向量垂直即數(shù)量積為0,得到sinθ+cosθ=-
1
5
,運(yùn)用平方和平方關(guān)系,求得sinθ-cosθ,進(jìn)而運(yùn)用商數(shù)關(guān)系,即可得到正切值.
解答: 解:由于向量
a
=(sinθ+cosθ,1),
b
=(5,1),且垂直,
a
b
=0,即5(sinθ+cosθ)+1=0,即sinθ+cosθ=-
1
5
,
平方得,sin2θ+cos2θ+2sinθcosθ=
1
25
,
則2sinθcosθ=
1
25
-1=-
24
25

且θ∈(0,π),則sinθ>0,cosθ<0,
則sinθ-cosθ=
sin2θ+cos2θ-2sinθcosθ

=
1+
24
25
=
7
5
,
則有sinθ=
3
5
,cosθ=-
4
5
,
則tanθ=
sinθ
cosθ
=-
3
4

故答案為:-
3
4
點(diǎn)評(píng):本題考查平面向量的數(shù)量積的坐標(biāo)表示和垂直的條件,考查同角三角函數(shù)的基本關(guān)系式的運(yùn)用,考查運(yùn)算能力,屬于中檔題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=asin3x+b3
x
cos3x+4,f(sin10°)=5,則f(cos100°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種計(jì)算機(jī)病毒是通過電子郵件進(jìn)行傳播的,下表是某公司前5天監(jiān)測(cè)到的數(shù)據(jù):
第x天12345
被感染的計(jì)算機(jī)數(shù)量y(臺(tái))10203981160
若用下列四個(gè)函數(shù)中的一個(gè)來描述這些數(shù)據(jù)的規(guī)律,則其中最接近的一個(gè)是( 。
A、f(x)=10x
B、f(x)=5x2-5x+10
C、f(x)=5•2x
D、f(x)=10log2x+10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于任意實(shí)數(shù)a,b,定義min(a,b)=
a,a≤b
b,a>b
,設(shè)函數(shù)f(x)=-x+3,g(x)=log3x,則函數(shù)h(x)=min{f(x),g(x)}的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2+bx+c(b,c∈R),已知方程f(f(x))=0有4個(gè)不同的實(shí)數(shù)根,且其中兩個(gè)根之和為-1,求證:c≤-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P(cosα,sinα)(0≤α<2π)在第三象限,則α的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(3+x)+loga(3-x),(a>0且a≠1),
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的定義域和值域;
(2)求關(guān)于x不等式f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log 
1
3
(-x2+6x)的值域( 。
A、(0,6)
B、(-∞,-2]
C、[-2,0)
D、[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A是不等式x2-8x-20<0的解集,集合B是不等式:(x-1-a)(x-1+a)≥0(a>0)的解集.p:x∈A,q:x∈B.
(1)若a=2時(shí),求A∩B;
(2)若p是¬q的充分不必要條件,求a的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案