精英家教網 > 高中數學 > 題目詳情

【題目】某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過15萬元時,按銷售利潤的進行獎勵;當銷售利潤超過15萬元時,若超過部分為A萬元,則超出部分按進行獎勵,沒超出部分仍按銷售利潤的進行獎勵記獎金總額為單位:萬元,銷售利潤為單位:萬元

1寫出該公司激勵銷售人員的獎勵方案的函數表達式;

2如果業(yè)務員老張獲得萬元的獎金,那么他的銷售利潤是多少萬元?

【答案】1

2)他的銷售利潤是39萬元.

【解析】

試題高中階段考察函數應用問題有一次函數模型、二次函數模型、指數函數模型以及分段函數模型.

解決關鍵在于建立數學模型,通過數學知識來解決.解決分段函數的問題要注意要在每一段上進行討論,得到最佳結果.

試題解析:(1)由題意,得

2∵x∈015]時,01x≤15,

y55>15∴x>15,

所以152log5x14)=55x39

答:老張的銷售利潤是39萬元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設圓的圓心在軸上,并且過兩點.

(1)求圓的方程;

(2)設直線與圓交于兩點,那么以為直徑的圓能否經過原點,若能,請求出直線的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}中,a1=1,a3=9,且an=an1+λn﹣1(n≥2).
( I)求λ的值及數列{an}的通項公式;
( II)設 ,且數列{bn}的前n項和為Sn , 求S2n

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】德國著名數學家狄利克雷在數學領域成就顯著,以其名命名的函數f(x)= ,稱為狄利克雷函數,則關于函數f(x)有以下四個命題: ①f(f(x))=1;
②函數f(x)是偶函數;
③任意一個非零有理數T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個點A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC為等邊三角形.
其中真命題的個數是(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,上頂點為B,O為坐標原點,且向量的夾角為

求橢圓的方程;

,點P是橢圓上的動點,求的最大值和最小值;

設不經過點B的直線l與橢圓相交于MN兩點,且直線BMBN的斜率之和為1,證明:直線l過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為響應國家“精準扶貧,產業(yè)扶貧”的戰(zhàn)略,某市面向全市征召《扶貧政策》義務宣傳志愿者,從年齡在[20,45]的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示.
(1)求圖中x的值,并根據頻率分布直方圖估計這500名志愿者中年齡在[35,40)歲的人數;
(2)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔任主要負責人.記這3名志愿者中“年齡低于35歲”的人數為X,求X的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正方形與梯形所在平面互相垂直,,,,點中點 .

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=aln(x2+1)+bx存在兩個極值點x1 , x2
(1)求證:|x1+x2|>2;
(2)若實數λ滿足等式f(x1)+f(x2)+a+λb=0,試求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓軸,軸的正半軸分別交于A,B兩點,原點O到直線AB的距離為該橢圓的離心率為

(1)求橢圓的方程

(2)是否存在過點P(的直線與橢圓交于M,N兩個不同的點,使成立?若存在,求出的方程;若不存在,說明理由。

查看答案和解析>>

同步練習冊答案