與橢圓共焦點且過點的雙曲線方程是 (    )
A.B.C.D.
B
橢圓的焦點坐標為,所以設雙曲線方程為,其中。將點代入可得:,解得(舍),所以雙曲線方程為,故選B
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

設C是橢圓:上任意一點,A、B是焦點,則在∆ABC中有:,類似地,點C是雙曲線任意一點,A、B是兩焦點,則∆ABC中有____________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓(x-2)2+y2=1經(jīng)過橢圓=1(ab>0)的一個頂點和一個焦點,則此橢圓的離心率e=
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中心點在原點,準線方程為,離心率為的橢圓方程是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓:兩個焦點之間的距離為2,且其離心率為.
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 若為橢圓的右焦點,經(jīng)過橢圓的上頂點B的直線與橢圓另一個交點為A,且滿足,求外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線,當變化時,直線被橢圓截得的最大弦長是(     )
A.4B.2C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.已知橢圓的中心在原點,焦點在坐標軸上,與過點P(1,2)且斜率為-2的直線相交所得的弦恰好被P平分,則此橢圓的離心率是       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若焦點在軸上的橢圓的離心率為,則的值是___________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線的一個焦點為(2,0),則它的離心率為( )
A.B.C.D.2

查看答案和解析>>

同步練習冊答案