3.若直線mx+2y+m=0與直線3mx+(m-1)y+7=0平行,則m的值為( 。
A.7B.0或7C.0D.4

分析 由m(m-1)=3m×2,求出m值,再進(jìn)行檢驗(yàn)即可.

解答 解:∵直線mx+2y+m=0與直線3mx+(m-1)y+7=0平行,
∴m(m-1)=3m×2,
∴m=0或7,
經(jīng)檢驗(yàn)都符合題意.
故選:B.

點(diǎn)評(píng) 本題考查兩直線平行的性質(zhì),兩直線平行時(shí),一次項(xiàng)系數(shù)之比相等,但不等于常數(shù)項(xiàng)之比.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.拋物線y2=2x的準(zhǔn)線方程是(  )
A.x=$\frac{1}{2}$B.x=1C.x=-$\frac{1}{2}$D.x=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若中心在原點(diǎn),焦點(diǎn)在y軸上的雙曲線離心率為$\sqrt{3}$,則此雙曲線的漸近線方程為( 。
A.y=±xB.$y=±\frac{{\sqrt{2}}}{2}x$C.$y=±\sqrt{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知曲線f(x)=2x2+1在點(diǎn)M(x0,y0)處的瞬時(shí)變化率為-8,則點(diǎn)M的坐標(biāo)為(-2,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB=2,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求A到平面BCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=a(x-1).
(Ⅰ)當(dāng)a=1時(shí),解不等式|f(x)|+|f(-x)|≥3x;
(Ⅱ)設(shè)|a|≤1,當(dāng)|x|≤1時(shí),求證:$|f({x^2})+x|≤\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知點(diǎn)(x,y)滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤2a}\\{x-y≤a}\end{array}\right.$(其中a為正實(shí)數(shù)),則z=2x-y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$\overrightarrow a=({1,cosa}),\overrightarrow b=({sina,1})$,若$\overrightarrow a⊥\overrightarrow b$,則sin2α=( 。
A.$-\frac{1}{2}$B.-1C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$\overrightarrow{OA}=(1,1,0)$,$\overrightarrow{OB}=(4,1,0)$,$\overrightarrow{OC}=(4,5,-1)$,則向量$\overrightarrow{AB}$和$\overrightarrow{AC}$的夾角的余弦值為( 。
A.$\frac{{\sqrt{26}}}{26}$B.$\frac{{\sqrt{26}}}{12}$C.$\frac{{3\sqrt{26}}}{26}$D.$\frac{{2\sqrt{26}}}{13}$

查看答案和解析>>

同步練習(xí)冊(cè)答案