2.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若2cos2B=4cosB-3
(Ⅰ)求角B的大小
(Ⅱ)若S△ABC=$\sqrt{3}$,asinA+csinC=5sinB,求邊b.

分析 (Ⅰ)根據(jù)二倍角公式求出cosB的值,即可得出角B的大小;
(Ⅱ)由三角形面積公式以及正弦、余弦定理,即可求出邊b的大。

解答 解:(Ⅰ)△ABC中,2cos2B=4cosB-3,
∴2(2cos2B-1)=4cosB-3,
即4cos2B-4cosB+1=0,
解得cosB=$\frac{1}{2}$;
又B∈[0,π],
∴B=$\frac{π}{3}$;
(Ⅱ)由面積公式得S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$acsin$\frac{π}{3}$=$\sqrt{3}$,
解得ac=4,
又asinA+csinC=5sinB,
∴a2+c2=5b,
由余弦定理得,
b2=a2+c2-2accosB=5b-2×4×$\frac{1}{2}$=5b-4,
∴b2-5b+4=0,
解得b=1或b=4;
又a2+c2=5b≥2ac=8,
∴b≥$\frac{8}{5}$,
故b=4.

點(diǎn)評(píng) 本題考查了三角恒等變換以及正弦、余弦定理的應(yīng)用問題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知一個(gè)水平放置的正方形用斜二測(cè)畫法作出的直觀圖是一個(gè)平行四邊形,若平行四邊形中有一條邊為4,則此正方形的面積是( 。
A..16或36B.36或64C.16或64D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,記bn=$\frac{{S}_{n}}{n}$,則(  )
A.數(shù)列{bn}是等差數(shù)列,{bn}的公差也為d
B.數(shù)列{bn}是等差數(shù)列,{bn}的公差為2d
C.數(shù)列{an+bn}是等差數(shù)列,{an+bn}的公差為d
D.數(shù)列{an-bn}是等差數(shù)列,{an-bn}的公差為$\fraci8akykw{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.$\int_{0}^{π}{({cosx+1})}dx$等于( 。
A.1B.0C.πD.π+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線x2-$\frac{{y}^{2}}{4}$=1的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=5x5+4x4+3x3+2x2+x+1,若用秦九韶算法求f(5)的值,下面說法正確的是( 。
A.至多4乘法運(yùn)算和5次加法運(yùn)算B.15次乘法運(yùn)算和5次加法運(yùn)算
C.10次乘法運(yùn)算和5次加法運(yùn)算D.至多5次乘法運(yùn)算和5次加法運(yùn)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸入x=2,則輸出y的值為( 。
A.5B.11C.23D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a∈R,則“a>0”是“a+$\frac{1}{a}$≥2”的(  )
A.必要不充分條件B.充分不必要條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若集合A={-1,0,1,2},B={x|x+1>0},則A∩B={0,1,2}.

查看答案和解析>>

同步練習(xí)冊(cè)答案