已知數(shù)列{an},{bn}的前n項和分別為An,Bn,且A100=8,B100=251.記Cn=an•Bn+bn•An-an•bn(n∈N*),則數(shù)列{Cn}的前100項的和為 .
【答案】分析:由題意可知Cn=An×Bn-An-1×Bn-1,Cn=C1+C2+…+Cn-1+Cn=a1×b1+(A2×B2-a1×b1)+…+(An-1×Bn-1-An-2×Bn-2)+(An×Bn-An-1×Bn-1)=An×Bn,由此可以求出數(shù)列{Cn}的前100項的和.
解答:解:Cn=an•Bn+bn•An-an•bn
=(An-An-1)×Bn+(Bn-Bn-1)×An-(An-An-1)×(Bn-Bn-1)
=An×Bn-An-1×Bn+Bn×An-Bn-1×An-(An×Bn-An-1×Bn-An×Bn-1+An-1×Bn-1]
=An×Bn-An-1×Bn-1,
∴Cn=An×Bn-An-1×Bn-1,
Cn-1=An-1×Bn-1-An-2×Bn-2
…C2=A2×B2-a1×b1
C1=a1×b1
∴Cn=C1+C2+…+Cn-1+Cn
=a1×b1+(A2×B2-a1×b1)+…+(An-1×Bn-1-An-2×Bn-2)+(An×Bn-An-1×Bn-1)=An×Bn
∴C100=A100×B100=8×251=2008
C(100)=A(100)×B(100)=8×251=2008.
答案:2008.
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要注意培養(yǎng)學(xué)生的計算能力.