19.已知非零向量$\overrightarrow{OA},\overrightarrow{OB}$不共線,且$2\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$,若$\overrightarrow{PA}=λ\overrightarrow{AB}(λ∈R)$,則x,y滿足的關(guān)系是( 。
A.x+y-2=0B.2x+y-1=0C.x+2y-2=0D.2x+y-2=0

分析 由于$\overrightarrow{PA}=λ\overrightarrow{AB}(λ∈R)$,即有$\overrightarrow{OA}$-$\overrightarrow{OP}$=λ($\overrightarrow{OB}$-$\overrightarrow{OA}$),可得$\overrightarrow{OP}$=(1+λ)$\overrightarrow{OA}$-λ$\overrightarrow{OB}$,又$2\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$,由于非零向量$\overrightarrow{OA},\overrightarrow{OB}$不共線,即可得到x,y滿足的關(guān)系.

解答 解:由于$\overrightarrow{PA}=λ\overrightarrow{AB}(λ∈R)$,即有$\overrightarrow{OA}$-$\overrightarrow{OP}$=λ($\overrightarrow{OB}$-$\overrightarrow{OA}$),
∴$\overrightarrow{OP}$=(1+λ)$\overrightarrow{OA}$-λ$\overrightarrow{OB}$,
又$2\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$,由于非零向量$\overrightarrow{OA},\overrightarrow{OB}$不共線
則有$\frac{x+y}{2}$=1,可得x+y-2=0.
故選A.

點(diǎn)評 本題考查平面向量的運(yùn)用,考查向量的加減運(yùn)算以及不共線向量的性質(zhì),考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等差數(shù)列{an}中,a2+a7=-32,a3+a8=-40.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{an+bn}是首項為1,公比為2的等比數(shù)列,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.$\frac{1+3i}{1-i}$=(  )
A.1+2iB.-1+2iC.1-2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖中的程序框圖的算法思路來源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入a,b,i的值分別為6,8,0 時,則輸出的i=( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角為θ,|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=1,$\overrightarrow{OP}$=t$\overrightarrow{OA}$,$\overrightarrow{OQ}$=(1-t)$\overrightarrow{OB}$,|$\overrightarrow{PQ}$|在t0時取最小值,當(dāng)0<t0<$\frac{1}{4}$時,cosθ的取值范圍為( 。
A.(-$\frac{1}{2}$,0)B.(-$\frac{1}{2}$,-$\frac{1}{4}$)C.($\frac{1}{4}$,1)D.(-$\frac{1}{2}$,$\frac{1}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.中國古代數(shù)學(xué)名著《九章算術(shù)》卷第五“商功”共收錄28個題目,其中一個題目如下:今有城下廣四丈,上廣二丈,高五丈,袤一百二十六丈五尺,問積幾何?其譯文可用三視圖來解釋:某幾何體的三視圖如圖所示(其中側(cè)視圖為等腰梯形,長度單位為尺),則該幾何體的體積為( 。
A.3795000立方尺B.2024000立方尺C.632500立方尺D.1897500立方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.有如圖所示的程序框圖,則該程序框圖表示的算法的功能是( 。
A.輸出使1×2×4×…×n≥1 000成立的最大整數(shù)n+2
B.輸出使1×2×4×…×n≥1 000成立的最小整數(shù)n+2
C.輸出使1×2×4×…×n≥1 000成立的最小整數(shù)n
D.輸出使1×2×4×…×n≥1 000成立的最大整數(shù)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+1,x≤0\\{log_2}x,x>0\end{array}$,則函數(shù)y=f(f(x))+1的所有零點(diǎn)構(gòu)成的集合為$\left\{{-3,-\frac{1}{2},\frac{1}{4},\sqrt{2}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)F且傾斜角為$\frac{π}{3}$的直線與拋物線C相交于P,Q兩點(diǎn),則弦PQ的長為( 。
A.3B.4C.5D.$\frac{16}{3}$

查看答案和解析>>

同步練習(xí)冊答案