分析 (1)由已知及正弦定理得:sinA=2sinAcosB,又0<A<π.可求cosB=$\frac{1}{2}$,結(jié)合范圍0<B<π,即可求B的值.
(2)由已知及余弦定理可求ac=4,聯(lián)立a+c=4,從而解得a,c的值.
解答 解:(1)在△ABC中,由2acosB=bcosC+ccosB,及正弦定理得:sinBcosC+sinCcosB=2sinAcosB,
即sin(B+C)=2sinAcosB,
又A+B+C=π,所以sin(B+C)=sinA,
從而sinA=2sinAcosB,又0<A<π.
故cosB=$\frac{1}{2}$,
又0<B<π,
所以B=$\frac{π}{3}$.
(2)∵b=2,B=$\frac{π}{3}$,a+c=4①,
∴由余弦定理b2=a2+c2-2accosB,可得:4=a2+c2-ac=(a+c)2-3ac=16-3ac,可得:ac=4②,
∴①②聯(lián)立解得:a=c=2.
點(diǎn)評 本題主要考查了正弦定理,余弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 56 | C. | 63 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $30(\sqrt{3}-1)m$ | B. | $60(\sqrt{3}-1)m$ | C. | $90(\sqrt{3}-1)m$ | D. | $120(\sqrt{3}-1)m$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com