17.已知△ABC中,∠A,∠B,∠C的對邊長度分別為a,b,c,已知點(diǎn)O為該三角形的外接圓圓心,點(diǎn)D,E,F(xiàn)分別為邊BC,AC,AB的中點(diǎn),則OD:OE:OF=(  )
A.a:b:cB.$\frac{1}{a}:\frac{1}:\frac{1}{c}$C.sinA:sinB:sinCD.cosA:cosB:cosC

分析 根據(jù)點(diǎn)O為該三角形的外接圓圓心,半徑為R,利用勾股定理求出OD,OE,OF,即可求出OD:OE:OF的值.

解答 解:由題意,點(diǎn)O為該三角形的外接圓圓心,設(shè)半徑為R,則OA=OB=OC=R,
∵D,E,F(xiàn)分別為邊BC,AC,AB的中點(diǎn).
∴OD2=R2-$(\frac{a}{2})^{2}$,OE2=R2-$(\frac{2})^{2}$,OF2=R2-$(\frac{c}{2})^{2}$.
那么OD2:OE2:OF2=($\frac{{a}^{2}}{4si{n}^{2}A}$-$\frac{{a}^{2}}{4}$)2:($\frac{^{2}}{4si{n}^{2}B}$-$\frac{^{2}}{4}$)2:($\frac{{c}^{2}}{4si{n}^{2}C}$-$\frac{{c}^{2}}{4}$)2
開方化簡:OD:OE:OF=$\frac{acosA}{sinA}$:$\frac{bcosB}{sinB}$:$\frac{ccosC}{sinC}$
由正弦定理可得:OD:OE:OF=cosA:cosB:cosC.
故選:D.

點(diǎn)評 本題考查了三角形的外接圓的性質(zhì)和正弦定理的運(yùn)用.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x+2,x≤2\\{log_2}x,x>2\end{array}\right.$,若?x0∈R,使得$f({x_0})≤5m-4{m^2}$成立,則實(shí)數(shù)m的取值范圍為( 。
A.$[{-1,\frac{1}{4}}]$B.$[{\frac{1}{4},1}]$C.$[{-2,\frac{1}{4}}]$D.$[{\frac{1}{3},1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知sinθ=-$\frac{{2\sqrt{5}}}{5}$.其中θ是第三象限角.
(Ⅰ)求cosθ,tanθ的值;
(Ⅱ)求$tan({θ-\frac{π}{4}})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=aln(x+1)-x2,任意x1,x2∈(0,1),x1>x2時(shí),都有f(x1+1)-f(x2+1)>x1-x2成立,則實(shí)數(shù)a的取值范圍是( 。
A.a≥15B.a>15C.a<5D.a≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知x10=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10 求:
(1)a0+a1+a2+a3+…+a9
(2)a0+a2+a4+a6+a8+a10
(3)a0,a1,a2,…,a10 中的最大項(xiàng)的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.現(xiàn)由某校高二年級(jí)四個(gè)班學(xué)生34人,其中一、二、三、四班分別為7人、8人、9人、10人,他們自愿組成數(shù)學(xué)課外小組.
(1)選其中一人為負(fù)責(zé)人,有多少種不同的選法?
(2)每班選一名組長,有多少種不同的選法?
(3)推選二人做中心發(fā)言,這二人需來自不同的班級(jí),有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若$P=\sqrt{a+6}+\sqrt{a+7}$,$Q=\sqrt{a+5}+\sqrt{a+8}$,(a>-5),則P,Q的大小關(guān)系為( 。
A.P<QB.P=QC.P>QD.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.等差數(shù)列{an}中,Sn是其前n項(xiàng)和,a1=-2017,$\frac{S2009}{2009}$-$\frac{S2007}{2007}$=2,則S2017的值為-2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在平面直角坐標(biāo)系xOy中,已知P是函數(shù)f(x)=xlnx-x的圖象上的動(dòng)點(diǎn),該曲線在點(diǎn)P處的切線l交y軸于點(diǎn)M(0,yM),過點(diǎn)P作l的垂線交y軸于點(diǎn)N(0,yN).則$\frac{y_N}{y_M}$的范圍是(-∞,-1]∪[3,+∞).

查看答案和解析>>

同步練習(xí)冊答案