3.已知關(guān)于x的一元二次不等式ax2+bx+c>0的解集為{x|-2<x<3},則不等式cx2-bx+a<0的解集是( 。
A.{x|x$<-\frac{1}{2}$或x$>\frac{1}{3}$}B.{x|x$\frac{1}{3}$或x>$\frac{1}{2}$}C.{x|-$\frac{1}{2}$<x<$\frac{1}{3}$}D.{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}

分析 關(guān)于x的不等式ax2+bx+c>0的解集為{x|-2<x<3},可知a<0,且-2,3是方程ax2+bx+c=0的兩個(gè)實(shí)數(shù)根,利用根與系數(shù)的關(guān)系可得a、b、c的關(guān)系;再代入不等式cx2-bx+a<0化為-6x2+x+1>0,求解即可.

解答 解:關(guān)于x的一元二次不等式ax2+bx+c>0的解集為{x|-2<x<3},
∴a<0,且-2,3是一元二次方程ax2+bx+c=0的兩個(gè)實(shí)數(shù)根,
∴$\frac{a}$=-(-2+3)=-1,$\frac{c}{a}$=-6,a<0;
∴不等式cx2-bx+a<0化為-6x2+x+1>0,
化為6x2-x-1<0,
解得-$\frac{1}{3}$<x<$\frac{1}{2}$.
因此不等式的解集為{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}.
故選:D.

點(diǎn)評(píng) 本題考查了一元二次不等式的解法以及一元二次方程的根與系數(shù)的關(guān)系,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,且Sn=$\frac{1}{8}$(an+2)2
(1)求數(shù)列{an}的前3項(xiàng);
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)令bn=$\frac{1}{2}$($\frac{{{a_{n+1}}}}{a_n}$+$\frac{a_n}{{{a_{n+1}}}}$)(n∈N*),證明:b1+b2+b3+…+bn<n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知$α∈(\frac{π}{2},π)$,且tanα=-3.
(1)求$sin(\frac{π}{4}+α)$的值;
(2)求$cos(\frac{2π}{3}-2α)$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.?dāng)?shù)列{an}的前n項(xiàng)和為Sn=n2+2n,則a1+a3+a5+…+a25=351.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.不等式(x+3)(1-x)≥0的解集為(  )
A.{x|-3≤x≤1}B.{x|x≥3或x≤-1}C.{x|-1≤x≤3}D.{x|x≤-3或x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法中不正確的是( 。
A.第一象限角可能是負(fù)角B.-830°是第三象限角
C.鈍角一定是第二象限角D.相等角的終邊與始邊均相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知正方體ABCD-A1B1C1D1棱長為a.
(1)求證:平面BDC1∥平面AB1D1
(2)求證:平面A1C⊥平面AB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.扇形的中心角為120°,半徑為2,則它的面積是(  )
A.240B.120C.$\frac{2π}{3}$D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}是等比數(shù)列,且a5,a7是函數(shù)f(x)=x2-4x+3的兩個(gè)零點(diǎn),則a2•a10=( 。
A.-3B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案