【題目】已知向量 ,函數(shù) . (Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,若 ,a=2,求b+c的取值范圍.
【答案】解:(Ⅰ)∵ = = = = .
∴ .
由 ,得 ,
即 ,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為 ;
(Ⅱ)由 ,得 ,
∴ ,
∴ 或 ,
即 ,或A=π+2kπ,k∈Z,
∵0<A<π,∴ .
由余弦定理得a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,
∴ ,
即b+c≤4.
又∵b+c>a=2,
∴2<b+c≤4.
【解析】(Ⅰ)由已知結(jié)合數(shù)量積的坐標(biāo)運(yùn)算得到f(x),降冪后利用輔助角公式化簡(jiǎn),由復(fù)合函數(shù)的單調(diào)性求得函數(shù)f(x)的單調(diào)遞增區(qū)間;(Ⅱ)由 求得角A,再由余弦定理結(jié)合基本不等式求得求b+c的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解該校高三年級(jí)學(xué)生數(shù)學(xué)科學(xué)習(xí)情況,對(duì)廣一模考試數(shù)學(xué)成績(jī)進(jìn)行分析,從中抽取了n 名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì)(該校全體學(xué)生的成績(jī)均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在[70,90)內(nèi)的所有數(shù)據(jù)的莖葉圖如圖2所示.
根據(jù)上級(jí)統(tǒng)計(jì)劃出預(yù)錄分?jǐn)?shù)線,有下列分?jǐn)?shù)與可能被錄取院校層次對(duì)照表為表( c ).
分?jǐn)?shù) | [50,85] | [85,110] | [110,150] |
可能被錄取院校層次 | 專(zhuān)科 | 本科 | 重本 |
(1)求n和頻率分布直方圖中的x,y的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為概率,若在該校高三年級(jí)學(xué)生中任取3 人,求至少有一人是可能錄取為重本層次院校的概率;
(3)在選取的樣本中,從可能錄取為重本和專(zhuān)科兩個(gè)層次的學(xué)生中隨機(jī)抽取3 名學(xué)生進(jìn)行調(diào)研,用ξ表示所抽取的3 名學(xué)生中為重本的人數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: + =1(a>b>0)過(guò)點(diǎn) ,且離心率e為 .
(1)求橢圓E的方程;
(2)設(shè)直線x=my﹣1(m∈R)交橢圓E于A,B兩點(diǎn),判斷點(diǎn)G 與以線段AB為直徑的圓的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓C的方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線l的極坐標(biāo)方程為ρcosθ+ρsinθ=m(m∈R).
(I)當(dāng)m=3時(shí),判斷直線l與C的位置關(guān)系;
(Ⅱ)當(dāng)C上有且只有一點(diǎn)到直線l的距離等于 時(shí),求C上到直線l距離為2 的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線C1:y2=8x的準(zhǔn)線與x軸交于點(diǎn)F1 , 焦點(diǎn)為F2 . 以F1 , F2為焦點(diǎn),離心率為 的橢圓記為C2 . (Ⅰ)求橢圓C2的方程;
(Ⅱ)設(shè)N(0,﹣2),過(guò)點(diǎn)P(1,2)作直線l,交橢圓C2于異于N的A、B兩點(diǎn).
(。┤糁本NA、NB的斜率分別為k1、k2 , 證明:k1+k2為定值.
(ⅱ)以B為圓心,以BF2為半徑作⊙B,是否存在定⊙M,使得⊙B與⊙M恒相切?若存在,求出⊙M的方程,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 (a>b>0)的左頂點(diǎn)和上頂點(diǎn)分別為A,B,左、右焦點(diǎn)分別是F1 , F2 , 在線段AB上有且僅有一個(gè)點(diǎn)P滿(mǎn)足PF1⊥PF2 , 則橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x+ex﹣a , g(x)=ln(x+2)﹣4ea﹣x , 其中e為自然對(duì)數(shù)的底數(shù),若存在實(shí)數(shù)x0 , 使f(x0)﹣g(x0)=3成立,則實(shí)數(shù)a的值為( )
A.﹣ln2﹣1
B.﹣1+ln2
C.﹣ln2
D.ln2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com