10.以A(1,3)和B(-5,1)為端點的線段AB的中垂線方程是( 。
A.3x-y+8=0B.x-3y+8=0C.3x+y+8=0D.3x+y+4=0

分析 先求出線段AB的中垂線的斜率,再求出線段AB的中點的坐標,點斜式寫出AB的中垂線得方程,并化為一般式.

解答 解:直線AB的斜率為$\frac{1-3}{-5-1}$=$\frac{1}{3}$,所以線段AB的中垂線得斜率k=-3,又線段AB的中點為(-2,2),
所以線段AB的中垂線得方程為y-2=-3(x+2)即3x+y+4=0,
故選:D.

點評 本題考查利用點斜式求直線的方程的方法,考查學生的計算能力,比較基礎.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知不等式|x-m|<|x|的解集為(1,+∞).
(1)求實數(shù)m的值;
(2)若不等式$\frac{a-5}{x}<|{1+\frac{1}{x}}|-|{1-\frac{m}{x}}|<\frac{a+2}{x}$對x∈(0,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.空間四邊形ABCD的各棱長和對角線均為a,E,F(xiàn)分別是BC,AD的中點,則異面直線AE,CF所成角的余弦值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且$\sqrt{3}a=2csinA$.
(1)確定角C的大小;
(2)若$c=\sqrt{7}$,且△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,四棱錐P-ABCD中,底面ABCD是邊長為4的菱形,∠BAD=60°,側(cè)面PAD⊥底面ABCD,且PA=PD=$\sqrt{13}$,M,N分別為BC,PA的中點
(1)求證:BN∥平面PDM
(2)求平面PAB與平面PCD所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.與圓x2+y2+6x+5=0外切,同時與圓x2+y2-6x-91=0內(nèi)切的圓的圓心在(  )
A.一個圓上B.一個橢圓上C.雙曲線的一支上D.一條拋物線上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設拋物線C:y2=2px(p>0)的焦點為F,A是拋物線上橫坐標為4的點,|AF|=5.
(1)求拋物線C的方程;
(2)設過點F且斜率為1的直線l交拋物線C于M,N兩點,O為坐標原點,求△OMN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在平面直角坐標系xOy中,已知點A(1,-2),B(-2,3),C(2,-1),以線段AB,AC為鄰邊作平行西變形ABDC.
(Ⅰ)求平行四邊形ABDC兩條對角線所成的角(非鈍角)的余弦值;
(Ⅱ)設實數(shù)t滿足($\overrightarrow{AB}$-t$\overrightarrow{OC}$)⊥$\overrightarrow{OD}$=0,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設定義在(0,+∞)的函數(shù)f(x)的導函數(shù)是f'(x),且x4f'(x)+3x3f(x)=ex,$f(3)=\frac{e^3}{81}$,則x>0時,f(x)(  )
A.有極大值,無極小值B.有極小值,無極大值
C.既無極大值,又無極小值D.既有極大值,又有極小值

查看答案和解析>>

同步練習冊答案