若f(x)=
1
x
-
1
x2
,則f′(x)=(  )
分析:據(jù)(xn=nxn-1,即可求出.
解答:解:∵f(x)=
1
x
-
1
x2
,∴f(x)=-
1
x2
+
2
x3
,
故選D.
點評:本題考查了冪函數(shù)的導(dǎo)數(shù),理解并記住公式是正確計算的前提.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對定義域是Df.Dg的函數(shù)y=f(x).y=g(x),
規(guī)定:函數(shù)h(x)=
f(x)g(x),當x∈Df且x∈Dg
f(x),當x∈Df且x∉Dg
g(x),當x∉Df且x∈Dg

(1)若函數(shù)f(x)=
1
x-1
,g(x)=x2,寫出函數(shù)h(x)的解析式;
(2)求問題(1)中函數(shù)h(x)的值域;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請設(shè)計一個定義域為R的函數(shù)y=f(x),及一個α的值,使得h(x)=cos4x,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x-1
,各項均為正數(shù)的數(shù)列{an}滿足an+2=f(an),若a2011=a2013,則a1=
5
+1
2
5
+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|
1
x
-1|.
(1)由函數(shù)y=
1
x
的圖象經(jīng)過怎樣的變換可以得到函數(shù)y=f(x)的圖象,并作出函數(shù)y=f(x)的圖象;
(2)若集合A={y|y=f(x),
1
2
≤x≤2},B=[0,1],試判斷A與B的關(guān)系;
(3)若存在實數(shù)a、b(a<b),使得集合{y|y=f(x),a≤x≤b}=[ma,mb],求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1x+1

(1)證明:f(x)在區(qū)間(-1,+∞)上單調(diào)遞減;
(2)若f(x)≤a在區(qū)間[0,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1x+1
的圖象為C1,若函數(shù)g(x)的圖象C2與C1關(guān)于x軸對稱,則g(x)的解析式為
 

查看答案和解析>>

同步練習(xí)冊答案