2.已知雙曲線$\frac{x^2}{2}-\frac{y^2}{a^2}=1$過點(2,-1),則該雙曲線的漸近線方程為( 。
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.y=±xD.$y=±\frac{{\sqrt{5}}}{2}x$

分析 利用已知條件求出a,然后求解雙曲線的漸近線方程即可.

解答 解:雙曲線$\frac{x^2}{2}-\frac{y^2}{a^2}=1$過點(2,-1),
可得2-$\frac{1}{{a}^{2}}$=1,可得a=1,
則該雙曲線的漸近線方程為:$y=±\frac{{\sqrt{2}}}{2}x$.
故選:A.

點評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x2-4x+a+3:
(1)若函數(shù)y=f(x)在[-1,1]上存在零點,求實數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=x+b,當(dāng)a=3時,若對任意的x1∈[1,4],總存在x2∈[5,8],使得g(x1)=f(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是①②④.(寫出所有正確結(jié)論的序號)
①?x∈(-∞,1),f(x)>0;
②?x0∈R,使${a^{x_0}}$,${b^{x_0}}$,${c^{x_0}}$不能構(gòu)成一個三角形的三條邊長;
③若△ABC為直角三角形,對于?n∈N*,f(2n)>0恒成立.
④若△ABC為鈍角三角形,則?x0∈(1,2),使f(x0)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)實數(shù)x,y滿足$\left\{{\begin{array}{l}{x≥1}\\{x+y≤5}\\{x-2y≤0}\end{array}}\right.$,則目標(biāo)函數(shù)z=y-lnx的最小值為1-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\vec a=({1,1})$,$\vec b=(3,m)$,$\overrightarrow a$∥($\overrightarrow a$+$\vec b$),則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在區(qū)間[-1,1]上任取兩數(shù)a、b,則使關(guān)于x的二次方程${x^2}+2\sqrt{{a^2}+{b^2}}x+1=0$有實數(shù)根的概率為$1-\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)$f(x)=\sqrt{3}sinx+cosx$的單調(diào)遞增區(qū)間為$[{-\frac{2}{3}π+2kπ,\frac{π}{3}+2kπ}]({k∈Z})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線l:(2+m)x+(1-2m)y+4-3m=0,則直線恒過一定點M的坐標(biāo)為(-1,-2),若直線l與直線x-2y-4=0垂直,則m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{y≤-\frac{5}{2}x+9}\\{x≥2}\\{y≥-1}\end{array}\right.$,則z=$\frac{y+2}{x+2}$+1的取值范圍是( 。
A.[-$\frac{1}{2}$,$\frac{3}{2}$]B.[$\frac{5}{4}$,$\frac{3}{2}$]C.[$\frac{7}{6}$,$\frac{5}{4}$]D.[$\frac{7}{6}$,$\frac{5}{2}$]

查看答案和解析>>

同步練習(xí)冊答案