在斜三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰三角形,點A1在平面ABC上的射影為AC的中點D,AC=2,BB1=3,則AB1與底面ABC所成角的正切值為________.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在斜三棱柱ABC-A1B1C1中,∠A1AB=∠A1AC,AB=AC,A1A=A1B=a,側面B1BCC1與底面ABC所成的二面角為120°,E、F分別是棱B1C1、A1A的中點
(Ⅰ)求A1A與底面ABC所成的角;
(Ⅱ)證明A1E∥平面B1FC;
(Ⅲ)求經過A1、A、B、C四點的球的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在斜三棱柱ABC-A1B1C1中,BB1=BA=BC=1,∠B1BC=60°,∠ABC=90°,平面BB1C1C⊥平面ABC,M、N分別是BC的三等分點.
(1)求證:A1N∥平面AB1M;
(2)求證:AB⊥B1M;
(3)求三棱錐A-B1BC的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在斜三棱柱ABC-A′B′C′中,底面△ABC為正三角形,設AA′:AC=λ.頂點A′在底面ABC上的射影O是△ABC的中心,P為側棱CC′中點,G為△PA′B′的重心.
(Ⅰ)求證:OG∥平面AA′B′B;
(Ⅱ)當λ=
2
時,求證:平面A′B′P⊥平面BB′C′C;
(Ⅲ)當λ=1時,求二面角C-A′B-P的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•武漢模擬)在斜三棱柱ABC-A1B1C1中,A0,B0,分別為側棱AA1,BB1上的點,且知BB0:B0B1=3:2,過A0,B0,C1的截面將三棱柱分成上下兩個部分體積之比為2:1,則AA0:A0A1=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在斜三棱柱ABC-A1B1C1中,側面ACC1A1⊥面ABC,AA1=
2
a
,A1C=CA=AB=a,AB⊥AC,D為AA1的中點.
(I)求證:CD⊥面ABB1A1
(II)在側棱BB1上取中點E,求二面角E-A1C1-A的平面角的余弦值.

查看答案和解析>>

同步練習冊答案