2.黑白兩種顏色的正六邊形地面磚按如圖的規(guī)律拼成若干個(gè)圖案:

則第n個(gè)圖案中的地面磚共有5n+2塊.

分析 通過已知的幾個(gè)圖案找出規(guī)律,可轉(zhuǎn)化為求一個(gè)等差數(shù)列的通項(xiàng)公式問題即可.

解答 解:第1個(gè)圖案中有白色地面磚6塊;第2個(gè)圖案中有白色地面磚10塊;第3個(gè)圖案中有白色地面磚14塊;…
設(shè)第n個(gè)圖案中有白色地面磚n塊,用數(shù)列{an}表示,則a1=6,a2=10,a3=14,可知a2-a1=a3-a2=4,…
∴數(shù)列{an}是以6為首項(xiàng),4為公差的等差數(shù)列,
∴an=6+4(n-1)=4n+2,
∴.第n個(gè)圖案中的地面磚共有5n+2塊.
故答案為5n+2.

點(diǎn)評 由已知的幾個(gè)圖案找出規(guī)律轉(zhuǎn)化為求一個(gè)等差數(shù)列的通項(xiàng)公式是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知平面向量$\overrightarrow a,\overrightarrow b$,$\overrightarrow a=({-1,1}),\overrightarrow b=({2,k})$,若$\overrightarrow a∥\overrightarrow b$,則實(shí)數(shù)k=( 。
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)$y=tan({\frac{π}{2}-x})$$x∈[{-\frac{π}{4},\frac{π}{4}}]$且x≠0的值域?yàn)椋ā 。?table class="qanwser">A.[-1,1]B.(-∞,-1]∪[1,+∞)C.(-∞,1)D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知a、b、c是直線,α是平面,給出下列命題:
①若a∥b,b⊥c,則a⊥c;   
②若a⊥b,b⊥c,則a∥c;
③若a∥α,b?α,則a∥b;  
④若a⊥α,b?α,則a⊥b;
⑤若a與b異面,則至多有一條直線與a、b都垂直.
⑥若a?α,b?α,a⊥c,b⊥c,則a∥b.
其中真命題是①④.(把符合條件的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2c2=2a2+2b2+ab,則△ABC的形狀是鈍角三角形.(填“直角”、“鈍角”或“銳角”等)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)的一段圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{π}{8}$個(gè)單位,得到y(tǒng)=g(x)的圖象,求直線$y=\sqrt{6}$與函數(shù)$y=\sqrt{2}g(x)$的圖象在(0,π)內(nèi)所有交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)$f(x)=\frac{ax}{{{x^2}+1}}(a>0)$的單調(diào)遞增區(qū)間是( 。
A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知a>0,求證:$\sqrt{a+5}-\sqrt{a+3}>\sqrt{a+6}-\sqrt{a+4}$
(2)證明:若a,b,c均為實(shí)數(shù),且$a={x^2}-2y+\frac{π}{2}$,$b={y^2}-2z+\frac{π}{3}$,$c={z^2}-2x+\frac{π}{6}$,求證:a,b,c中至少有一個(gè)大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如a$\sqrt{a}$+b$\sqrt$>a$\sqrt$+b$\sqrt{a}$,則a,b必須滿足的條件是(  )
A.a>b>0B.a<b<0C.a>bD.a≥0,b≥0,且a≠b

查看答案和解析>>

同步練習(xí)冊答案