16.在($\sqrt{x}$+$\frac{1}{{2\root{4}{x}}}$)n的展開式中,已知含x的一次項(xiàng)為第五項(xiàng).
(1)求n的值;
(2)求展開式中的有理項(xiàng).

分析 (1)利用二項(xiàng)式展開式的通項(xiàng)公式結(jié)合題意,即可求出n的值;
(2)利用二項(xiàng)式展開式的通項(xiàng)公式,即可求出展開式中的有理項(xiàng).

解答 解:(1)($\sqrt{x}$+$\frac{1}{{2\root{4}{x}}}$)n展開式的通項(xiàng)公式為
Tr+1=${C}_{n}^{r}$•${(\sqrt{x})}^{n-r}$•${(\frac{1}{2\root{4}{x}})}^{r}$
=${C}_{n}^{r}$•${(\frac{1}{2})}^{r}$•${x}^{\frac{2n-3r}{4}}$,
由已知得,當(dāng)r=4時(shí),為x的一次項(xiàng),
即$\frac{2n-12}{4}$=1,
解得n=8;
(2)由(1)知,Tr+1=${C}_{8}^{r}$•${(\frac{1}{2})}^{r}$•${x}^{\frac{16-3r}{4}}$,
要使Tr+1為有理項(xiàng),則$\frac{16-3r}{4}$∈Z;
又r=0,1,2,…,8,
所以r=0,4,8;
所以展開式中的有理項(xiàng)為:
第1項(xiàng)T1=x4,
第5項(xiàng)T5=$\frac{35}{8}$x,
第9項(xiàng)T9=$\frac{1}{25{6x}^{2}}$.

點(diǎn)評(píng) 本題考查了二項(xiàng)式展開式通項(xiàng)公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤1}\\{y≥kx-1}\end{array}\right.$,若Z=kx-y的最大值為1,則實(shí)數(shù)k的取值范圍是(  )
A.k$≥\frac{1}{2}$B.k=$\frac{1}{2}$C.k$≤\frac{1}{2}$D.0$≤k≤\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)設(shè)(3x-1)4=a0+a1x+a2x2+a3x3+a4x4
①求a0+a1+a2+a3+a4;
②求a0+a2+a4;
③求a1+a2+a3+a4;
(2)求S=C271+C272+…+C2727除以9的余數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.命題:“若x2<1,則-1<x<1”的逆否命題是真命題(填真假).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.調(diào)查某市出租車使用年限x和該年支出維修費(fèi)用y(萬元),得到數(shù)據(jù)如表:
x23456
y2.23.85.56.57
(1)畫出y關(guān)于x的散點(diǎn)圖;
(2)用最小二乘法求出回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)由(2)中結(jié)論預(yù)測(cè)第10年所支出的維修費(fèi)用.
參考數(shù)據(jù):$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列能構(gòu)成集合的是( 。
A.中央電視臺(tái)著名節(jié)目主持人B.我市跑得快的汽車
C.贛州市所有的中學(xué)生D.贛州的高樓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.復(fù)平面內(nèi)復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i,
(1)若復(fù)數(shù)z是純虛數(shù),求m的值;
(2)若在復(fù)平面內(nèi)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于第四象限,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)求函數(shù)y=$\frac{\sqrt{3-x}}{x-1}$的定義域;
(2)求函數(shù)y=-x2+4x-2(1≤x≤4)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過點(diǎn)(3,2$\sqrt{3}$)的直線與圓x2+y2-2x-3=0相切,且與直線kx+y+1=0垂直,則k的值為0或$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案