閱讀如右圖所示的程序框圖,如果輸入的的值為6,那么運(yùn)行相應(yīng)程序,輸出的的值為

    A. 3           B. 5           C. 10          D. 16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線x2-y2=1,點(diǎn)F1,F(xiàn)2為其兩個(gè)焦點(diǎn),點(diǎn)P為雙曲線上一點(diǎn),若PF1⊥PF2,則PF1+PF2=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.

(1) 若x2-1比1遠(yuǎn)離0,求x的取值范圍;

(2) 對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知f(n)=

(1) 當(dāng)n=1,2,3時(shí),分別比較f(n)與g(n)的大小(直接給出結(jié)論);

(2) 由(1)猜想f(n)與g(n)的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)函數(shù)f(x)=x-xlnx,數(shù)列{an}滿足0<a1<1,an+1=f(an).求證:

(1) 函數(shù)f(x)在區(qū)間(0,1)是增函數(shù);

(2) an<an+1<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的交點(diǎn)在其準(zhǔn)線上.設(shè)拋物線,弦AB過焦點(diǎn),△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為(     )

    A.           B.              C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知全集,集合,,那么集合                                                             

(A)                 (B)  

(C)                   (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


某花店每天以每枝10元的價(jià)格從農(nóng)場(chǎng)購進(jìn)若干支玫瑰花,并開始以每枝20元的價(jià)格出售,已知該花店的營(yíng)業(yè)時(shí)間為8小時(shí),若前7小時(shí)內(nèi)所購進(jìn)的玫瑰花沒有售完,則花店對(duì)沒賣出的玫瑰花以每枝5元的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),1小時(shí)內(nèi)完全能夠把玫瑰花低價(jià)處理完畢,且處理完畢后,當(dāng)天不再購進(jìn)玫瑰花).該花店統(tǒng)計(jì)了100天內(nèi)玫瑰花在每天的前7小時(shí)內(nèi)的需求量(單位:枝,)(由于某種原因需求量頻數(shù)表中的部分?jǐn)?shù)據(jù)被污損而無法看清),制成如下表格(注:;視頻率為概率).

前7小時(shí)內(nèi)的需求量

14

15

16

17

頻數(shù)

10

20

(Ⅰ)若花店一天購進(jìn)16枝玫瑰花,表示當(dāng)天的利潤(rùn)(單位:元),求的分布列及數(shù)學(xué)期望;

(Ⅱ)若花店每天購進(jìn)16枝玫瑰花所獲得的平均利潤(rùn)比每天購進(jìn)17枝玫瑰花所獲得的平均利潤(rùn)大,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知向量a=(cos x,sin x),=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案