3.已知矩陣A=$[\begin{array}{l}{1}&{-1}\\{a}&{1}\end{array}]$,若點P(1,1)在矩陣A對應的變換作用下得到點P′(0,-8).
(1)求實數(shù)a的值;
(2)求矩陣A的特征值.

分析 (1)根據(jù)矩陣的乘法,可得方程,即可求實數(shù)a的值;
(2)利用矩陣A的特征多項式為f(λ)=(λ-1)2-9=λ2-2λ-8,求矩陣A的特征值.

解答 解:(1)由$[\begin{array}{l}{1}&{-1}\\{a}&{1}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{0}\\{-8}\end{array}]$,得a+1=-8,所以a=-9.
(2)由(1)知A=$[\begin{array}{l}{1}&{-1}\\{-9}&{1}\end{array}]$,則矩陣A的特征多項式為f(λ)=(λ-1)2-9=λ2-2λ-8,
令f(λ)=0,所以矩陣A的特征值為-2或4.

點評 本題考查矩陣的乘法,考查矩陣的特征值,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=-x2+mx-3(m∈R),g(x)=xlnx
(Ⅰ)若f(x)在x=1處的切線與直線3x-y+3=0平行,求m的值;
(Ⅱ)求函數(shù)g(x)在[a,a+2](a>0)上的最小值;
(Ⅲ)?x∈(0,+∞)都有f(x)≤2g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),兩個焦點分別為F1、F2,斜率為k的直線l過右焦點F2且與橢圓交于A、B兩點,設l與y軸交點為P,線段PF2的中點恰為B.
(1)若|k|≤$\frac{{2\sqrt{5}}}{5}$,求橢圓C的離心率的取值范圍.
(2)若k=$\frac{{2\sqrt{5}}}{5}$,A、B到右準線距離之和為$\frac{9}{5}$,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知命題p:定義在R上的奇函數(shù)f(x)滿足f(0)=0,命題q:函數(shù)f(x)=$\frac{{{x^3}-x}}{x-1}$為偶函數(shù),則下列命題中為真命題的是( 。
A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若集合P={x|1≤log2x<2},Q={1,2,3},則P∩Q=(  )
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設p:函數(shù)f(x)=2|x-a|在區(qū)間(4,+∞)上單調(diào)遞增;q:loga2<1,如果“¬p”是真命題,“p或q”也是真命題,則實數(shù)a的取值范圍為a>4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若a和b異面,b和c異面,則(  )
A.a∥cB.a和c異面
C.a和c相交D.a與c或平行或相交或異面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.給定下列兩個命題:
p1:?a,b∈R,a2-ab+b2<0;
p2:在三角形ABC中,A>B,則sinA>sinB.
則下列命題中的真命題為(  )
A.p1B.p1∧p2C.p1∨(¬p2D.(¬p1)∧p2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{x+1}$+$\sqrt{1-x}$+x的定義域是[-1,1].

查看答案和解析>>

同步練習冊答案