10.實數(shù)x,y滿足x2+y2+xy=1,則x+y的最小值為-$\frac{2\sqrt{3}}{3}$.

分析 由x2+y2+xy=1,可得(x+y)2=1+xy≤1+$(\frac{x+y}{2})^{2}$,即可得出.

解答 解:由x2+y2+xy=1,可得(x+y)2=1+xy≤1+$(\frac{x+y}{2})^{2}$,
解得:x+y≥-$\frac{2\sqrt{3}}{3}$,當且僅當x=y=-$\frac{\sqrt{3}}{3}$時取等號.
故答案為:-$\frac{2\sqrt{3}}{3}$.

點評 本題考查了重要不等式的性質(zhì)及其應用,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知隨機變量η,ξ具有關(guān)系η=3ξ+2,且E(ξ)=1,D(η)=9,則下列式子中正確的是(  )
A.E(η)=5,D(ξ)=3B.E(η)=3,D(ξ)=27C.E(η)=9,D(ξ)=81D.E(η)=5,D(ξ)=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.10${\;}^{2-lg\frac{4}{5}}$=125.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合M={0,2},無窮數(shù)列{an}滿足an∈M,且$t=\frac{a_1}{3}+\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+\frac{{{a_{100}}}}{{{3^{100}}}}$,則實數(shù)t一定不屬于( 。
A.[0,1)B.(0,1]C.$[\frac{1}{3},\frac{2}{3})$D.$(\frac{1}{3},\frac{2}{3}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}是首項為正數(shù)的等差數(shù)列,a1•a2=3,a2•a3=15.
(1)求數(shù)列{an}的通項公式;
(2)設bn=(an+1)•2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖,在直角梯形ABCD中,AB∥CD,AB=2,AD=DC=1,P是線段BC上一動點,Q是線段DC上一動點,$\overrightarrow{DQ}$=λ$\overrightarrow{DC}$,$\overrightarrow{CP}$=(1-λ)$\overrightarrow{CB}$,則$\overrightarrow{AP}$•$\overrightarrow{AQ}$的取值范圍是(  )
A.(-∞,$\frac{9}{4}$]B.[0,2]C.[0,3]D.[0,$\frac{9}{4}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若點($\sqrt{3}$,2)在直線l:ax+y+1=0上,則直線l的傾斜角為(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知z1、z2為復數(shù),且|z1|=2,若z1+z2=2i,則|z1-z2|的最大值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設函數(shù)f(x)=-a2lnx+x2-ax(a∈R).
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)如果a>0且關(guān)于x的方程f(x)=m有兩解x1,x2(x1<x2),證明x1+x2>2a.

查看答案和解析>>

同步練習冊答案