6.若雙曲線M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點分別是F1,F(xiàn)2,以F1F2為直徑的圓與雙曲線M相交于點P,且|PF1|=16,|PF2|=12,則雙曲線M的離心率為(  )
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.5

分析 利用勾股定理以及雙曲線的定義,求出a,c即可求解雙曲線的離心率即可.

解答 解:雙曲線M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點分別是F1,F(xiàn)2,
以F1F2為直徑的圓與雙曲線M相交于點P,且|PF1|=16,|PF2|=12,
可得2a=16-12=4,解得a=2,2c=$\sqrt{1{6}^{2}+1{2}^{2}}$=20,可得c=10.
所以雙曲線的離心率為:e=$\frac{c}{a}$=5.
故選:D.

點評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=sinx•(4cos2x-1)的最小正周期是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在等腰梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,$CF=\sqrt{2}$.
(1)求證:BC⊥平面ACFE;
(2)點M在線段EF上運動,設(shè)平面MAB與平面FCB二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.A={x|y=lg(x2+3x-4)},$B=\left\{{y\left|{y={2^{1-{x^2}}}}\right.}\right\}$,則A∩B=( 。
A.(0,2]B.(1,2]C.[2,4)D.(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點為F,過橢圓C中心的弦PQ長為2,且∠PFQ=90°,△PQF的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A1、A2分別為橢圓C的左、右頂點,S為直線$x=2\sqrt{2}$上一動點,直線A1S交橢圓C于點M,直線A2S交橢圓于點N,設(shè)S1、S2分別為△A1SA2、△MSN的面積,求$\frac{S_1}{S_2}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.18、如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=PC=1,$PB=PD=\sqrt{2}$,E為線段PD上一點,且PE=2ED.
(Ⅰ)若F為PE的中點,證明:BF∥平面ACE;
(Ⅱ)求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}2-{log_2}(-x+2),0≤x<2\\ 2-f(-x),-2<x<0\end{array}\right.$則|f(x)|≤2的解集為( 。
A.[0,1]B.(-2,1]C.$[-\frac{7}{4},2)$D.$[{-\frac{7}{4},1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,$\overrightarrow m=(a,2b-c)$,$\overrightarrow n=(cosA,cosC)$,且$\overrightarrow m∥\overrightarrow n$.
(Ⅰ)且角A的大;
(Ⅱ)已知$a=2\sqrt{5}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,-1)$,$\overrightarrow c=(4,m)$,且$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow c$,則m=(  )
A.3B.-3C.4D.-4

查看答案和解析>>

同步練習(xí)冊答案