【題目】設(shè)數(shù)列滿足,,且,若表示不超過(guò)的最大整數(shù),則( )
A. 2018 B. 2019 C. 2020 D. 2021
【答案】C
【解析】
an+2﹣2an+1+an=2,可得an+2﹣an+1﹣(an+1﹣an)=2,a2﹣a1=4.利用等差數(shù)列的通項(xiàng)公式、累加求和方法、取整函數(shù)即可得出.
∵an+2﹣2an+1+an=2,∴an+2﹣an+1﹣(an+1﹣an)=2,
a2﹣a1=4.
∴{an+1﹣an}是等差數(shù)列,首項(xiàng)為4,公差為2.
∴an+1﹣an=4+2(n﹣1)=2n+2.
∴n≥2時(shí),an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+……+(a2﹣a1)+a1
=2n+2(n﹣1)+……+2×2+2n(n+1).
∴.
∴1.
∴2+2018=2020.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人射擊,已知甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為.
(1)兩人各射擊一次,求至少有一人擊中目標(biāo)的概率;
(2)若制定規(guī)則如下:兩人輪流射擊,每人至多射擊2次,甲先射,若有人擊中目標(biāo)即停止射擊.
①求乙射擊次數(shù)不超過(guò)1次的概率;
②記甲、乙兩人射擊次數(shù)和為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣位于沙漠地帶,人與自然長(zhǎng)期進(jìn)行頑強(qiáng)的斗爭(zhēng),到1996年底全縣的綠化率已達(dá)到30%(成為綠洲).從1997年開始,每年將出現(xiàn)這樣的局面,原有沙漠面積的16%被栽上樹,改造為綠洲,而同時(shí),原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?/span>
(1)設(shè)全縣面積為1,1996年底綠洲面積為,經(jīng)過(guò)年綠洲面積為.求證:.
(2)至少需經(jīng)過(guò)多少年的努力才能使全縣的綠化率超過(guò)60%(年取整數(shù))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)和為,且滿足,.
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;
(2)求數(shù)列的前項(xiàng)和;
(3)若,如果對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2bcosC+c=2a.
(Ⅰ)求角B的大小;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學(xué)習(xí)小組對(duì)成都市一中心路段(限行速度為千米/小時(shí))的擁堵情況進(jìn)行調(diào)查統(tǒng)計(jì),通過(guò)數(shù)據(jù)分析發(fā)現(xiàn):該路段的車流速度(輛/千米)與車流密度(千米/小時(shí))之間存在如下關(guān)系:如果車流密度不超過(guò)該路段暢通無(wú)阻(車流速度為限行速度);當(dāng)車流密度在時(shí),車流速度是車流密度的一次函數(shù);車流密度一旦達(dá)到該路段交通完全癱瘓(車流速度為零).
(1)求關(guān)于的函數(shù)
(2)已知車流量(單位時(shí)間內(nèi)通過(guò)的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】證明:在任意個(gè)人中,可以找到兩個(gè)人、,使得其余個(gè)人中,至少有個(gè)人他們中的每一個(gè),或者都認(rèn)識(shí)、;或者都不認(rèn)識(shí)、.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是邊長(zhǎng)為1的正方形,垂直于底面,.
(1)求證;
(2)求平面與平面所成二面角的大。
(3)設(shè)棱的中點(diǎn)為,求異面直線與所成角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com