已知等比數(shù)列的前n項和Sn=3n+a,則a的值等于
 
考點:等比數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得數(shù)列的前三項,由等比數(shù)列可得a的方程,解方程可得.
解答: 解:∵Sn=3n+a,
∴a1=S1=31+a=3+a,
a1+a2=S2=32+a,解得a2=6,
a1+a2+a3=S3=33+a,解得a3=18,
∵數(shù)列為等比數(shù)列,
∴62=18(3+a),解得a=-1
故答案為:-1
點評:本題考查等比數(shù)列的求和公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△AOB中,∠AOB=
3
4
π,點O到直線AB的距離為10,則邊AB的最小值為.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個等差數(shù)列{an},{bn},
a1+a2+…+an
b1+b2+…+bn
=
7n+2
n+3
,則
a5
b5
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=ex-e-x的敘述正確的是
 
.(填正確序號)
(1)f(x)為奇函數(shù)           
(2)f(x)為增函數(shù)
(3)f(x)在x=0處取極值   
(4)f(x)的圖象關(guān)于點(0,1)對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,M、N、Q分別為AB,BB1,C1D1的中點,過M、N、Q的平面與正方體相交截得的圖形是
 
邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|1<x≤2},B={ x|x<a},若A⊆B,則a的取值范圍是( 。
A、{a|a≥1}
B、{a|a≤1}
C、{a|a≥2}
D、{a|a>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式組
x-y≥0
2x+y≤2
y≥0
x+y≤a
表示的平面區(qū)域不能構(gòu)成三角形,則a的范圍是( 。
A、1<a<
4
3
B、1<a≤
4
3
C、1≤a≤
4
3
D、1≤a<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和記為Sn,a1=t,點(Sn,an+1)在直線y=2x+1上,其中n∈N*
(1)若數(shù)列{an}是等比數(shù)列,求實數(shù)t的值;
(2)設(shè)各項均不為0的數(shù)列{cn}中,所有滿足ci•ci+1<0的整數(shù)i的個數(shù)稱為這個數(shù)列{cn}的“積異號數(shù)”,令cn=
nan-4
nan
(n∈N*),在(1)的條件下,求數(shù)列{cn}的“積異號數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x0滿足f(x0)=x0,則稱x=x0為f(x)的不動點.已知函數(shù)f(x)=x3+bx+3,其中b為常數(shù).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若存在一個實數(shù)x0,使得x=x0既是f(x)的不動點,又是f(x)的極值點.求實數(shù)b的值.

查看答案和解析>>

同步練習(xí)冊答案