設(shè)A={x|x2-4x-5=0},B={x|x2=1},求A∪B,A∩B.
考點(diǎn):交集及其運(yùn)算,并集及其運(yùn)算
專題:集合
分析:利用二次函數(shù)的性質(zhì)求出A={x|x2-4x-5=0}={-1,5},B={x|x2=1}={-1,1},由此能求出A∪B和A∩B.
解答: 解:∵A={x|x2-4x-5=0}={-1,5},B={x|x2=1}={-1,1},
∴A∪B={-1,1,5},A∩B={-1}.
點(diǎn)評(píng):本題考查并集和交集的求法,是基礎(chǔ)題,解題時(shí)要注意二次函數(shù)的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)任意實(shí)數(shù)k,直線y=kx+1與圓x2+y2=4的位置關(guān)系一定是( 。
A、相離B、相切
C、相交且不過圓心D、相交且過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若tanA與tanB是方程x2-6x+7=0的兩個(gè)根,求tanC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)準(zhǔn)備在開學(xué)時(shí)舉行一次大學(xué)一年級(jí)學(xué)生座談會(huì),擬邀請(qǐng)20名來自本校機(jī)械工程學(xué)院、海洋學(xué)院、醫(yī)學(xué)院、經(jīng)濟(jì)學(xué)院的學(xué)生參加,各學(xué)院邀請(qǐng)的學(xué)生數(shù)如下表所示:
學(xué)院機(jī)械工程學(xué)院海洋學(xué)院醫(yī)學(xué)院經(jīng)濟(jì)學(xué)院
人數(shù)4646
(Ⅰ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個(gè)均不屬于同一學(xué)院的概率;
(Ⅱ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,設(shè)來自醫(yī)學(xué)院的學(xué)生數(shù)為ξ,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“存在x∈R,使得
x2+1
+
1-x2
=0”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖AC是圓O的直徑,B、D是圓O上兩點(diǎn),AC=2BC=2CD=2,PA⊥圓O所在的平面,PA=
3
,點(diǎn)M在線段BP上,且BM=
1
3
BP.
(1)求證:CM∥平面PAD;
(2)求異面直線BP與CD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
2x2+m
在(
1
2
,f(
1
2
))處的切線方程為8x-9y+t=0(m∈N,t∈R)
(1)求m和t的值;
(2)若關(guān)于x的不等式f(x)≤ax+
8
9
在[
1
2
,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

任取實(shí)數(shù)a,b∈[-1,1],則a,b滿足b≥a2的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+2x-3的零點(diǎn)所在的大致區(qū)間是(  )
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案