已知橢圓:
y2
a2
+
x2
b2
=1(a>b>0)
,離心率為
2
2
,焦點F1(0,-c),F(xiàn)2(0,c)過F1的直線交橢圓于M,N兩點,且△F2MN的周長為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線l與y軸交于點P(0,m)(m≠0),與橢圓C交于相異兩點A,B且
AP
PB
.若
OA
OB
=4
OP
,求m的取值范圍.
考點:直線與圓錐曲線的關(guān)系,橢圓的標(biāo)準(zhǔn)方程
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)先離心率為
2
2
,△F2MN的周長為4,可求出a,b,c的值,從而得到答案.
(2)先設(shè)l與橢圓C交點為A、B的坐標(biāo),然后聯(lián)立直線和橢圓方程消去y,得到關(guān)于x的一元二次方程,進(jìn)而得到兩根之和、兩根之積,根據(jù)
AP
PB
OA
OB
=4
OP
,可得λ=3,再利用韋達(dá)定理,即可解出m的范圍.
解答: 解:(Ⅰ)由題意,4a=4,
c
a
=
2
2

∴a=1,c=
2
2

b=
a2-c2
=
2
2
,
∴橢圓方程方程為y2+
x2
1
2
=1

(Ⅱ)設(shè)l與橢圓C交點為A(x1,y1),B(x2,y2
y=kx+m
y2+2x2=1
得(k2+2)x2+2kmx+(m2-1)=0
△=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0(*)
∴x1+x2=-
2km
k2+2
,x1x2=
m2-1
k2+2

AP
PB
,
OA
OB
=4
OP
,
∴λ=3
∴-x1=3x2
∴x1+x2=-2x2,x1x2=-3x22
∴3(x1+x22+4x1x2=0,
∴3(-
2km
k2+2
2+4•
m2-1
k2+2
=0,
整理得4k2m2+2m2-k2-2=0
m2=
1
4
時,上式不成立;m2
1
4
時,k2=
2-2m2
4m2-1

由(*)式得k2>2m2-2
∵k≠0,
k2=
2-2m2
4m2-1
>0,
∴-1<m<-
1
2
1
2
<m<1
即所求m的取值范圍為(-1,-
1
2
)∪(
1
2
,1).
點評:本題主要考查橢圓的標(biāo)準(zhǔn)方程、基本性質(zhì)和直線與橢圓的綜合問題.直線和圓錐曲線的綜合題是高考的重點題目,要強(qiáng)化學(xué)習(xí).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①第二象限角大于第一象限角;
②三角形的內(nèi)角是第一象限角或第二象限角;
③不論用角度制還是用弧度制度量一個角,它們與扇形所在圓的半徑的大小無關(guān);
④若sinα=sinβ,則α與β的終邊相同;
⑤若cosθ<0,則θ是第二或第三象限的角.
其中正確命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA,PB是圓O的兩條切線,A,B是切點,C是劣弧AB(不包括端點)上一點,直線PC交圓O于另一點D,Q在弦CD上,且∠DAQ=∠PBC.求證:
(1)
BD
AD
=
BC
AC
;
(2)△ADQ∽△DBQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知|BC|=2,且
|AB|
|AC|
=
2
,求點A的軌跡方程,并說明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知如圖,四邊形ABCD是矩形,PA⊥面ABCD,其中AB=3,PA=4.若在PD上存在一點E,使得BE⊥CE.
(Ⅰ)求線段AD長度的取值范圍;
(Ⅱ)若滿足條件的E點有且只有一個,求二面角E-BC-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=45°,四邊形BCC1B1為矩形,若AC=5,AB=4,BC=3
(1)求證:AB1⊥面A1BC;
(2)求二面角C-AA1-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)面ADD1A1⊥底面ABCD,D1A=D1D=
2
,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(Ⅰ)求證:A1O∥平面AB1C;
(Ⅱ)求銳二面角B1-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2-2ax+2>0在x∈(-1,2)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若AB=CB=2,A1C=
6
,求二面角B-AC=A1的余弦值.

查看答案和解析>>

同步練習(xí)冊答案