9.已知復(fù)數(shù)z滿足:$\frac{{z(1+i){i^3}}}{2-i}=1-i$則復(fù)數(shù)$\overline z$的虛部為(  )
A.iB.-iC.1D.-1

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)與虛部的定義即可得出.

解答 解:∵$\frac{{z(1+i){i^3}}}{2-i}=1-i$,∴z(1+i)(-i)=(2-i)(1-i),
∴z(1-i)=1-3i,∴z(1-i)(1+i)=(1-3i)(1+i),∴2z=4-2i,
∴z=2-i.
則復(fù)數(shù)$\overline z$=2+i的虛部為1.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)與虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右頂點(diǎn)分別為A1,A2,左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,點(diǎn)B(4,0),F(xiàn)2為線段A1B的中點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)B且斜率不為0的直線l與橢圓C交于M,N兩點(diǎn),已知直線A1M與A2N相交于點(diǎn)G,求證:以點(diǎn)G為圓心,GF2的長為半徑的圓總與x軸相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是長方形,側(cè)棱PD⊥底面ABCD,且PD=AD=1,DC=2,過D作DF⊥PB于F,過F作FE⊥PB交PC于E.
(Ⅰ)證明:DE⊥平面PBC;
(Ⅱ)求平面DEF與平面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)是定義在R上的奇函數(shù),若g(x)=f(x+1)+5,g′(x)為g(x)的導(dǎo)函數(shù),對(duì)?x∈R,總有g(shù)′(x)>2x,則g(x)<x2+4的解集為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),過點(diǎn)F1的直線l與雙曲線的左右兩支分別交于A、B兩點(diǎn),若△ABF2是等邊三角形,則該雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x∈Z|-1≤x≤2},B={x|log3x<1},則A∩B=( 。
A.{-1,0,1,2}B.{0,1,2}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有竹九節(jié),下三節(jié)容四升,上四節(jié)容三升.問中間二節(jié)欲均容各多少?”意思是:“今有9節(jié)長的竹子,下部分的3節(jié)容量和為4升,上部分的4節(jié)容量和為3升.且每一節(jié)容量變化均勻(即每節(jié)容量成等差數(shù)列),問各節(jié)的容量是多少?”則根據(jù)上述條件,該竹子的總?cè)萘繛椋ā 。?table class="qanwser">A.$\frac{201}{22}$B.$\frac{201}{11}$C.$\frac{63}{8}$D.$\frac{21}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.由變量x與y的一組數(shù)據(jù):
x1571319
yy1y2y3y4y5
得到的線性回歸方程為$\stackrel{∧}{y}$=2x+45,則$\overline{y}$=( 。
A.135B.90C.67D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線y2=4x截直線y=2x+m所得弦長$|{AB}|=\sqrt{15}$.
(1)求m的值;
(2)設(shè)P是x軸上的點(diǎn),且△ABP的面積為$\frac{{9\sqrt{3}}}{2}$,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案